Loading…

A new practical framework for the stability analysis of perturbed saddle-point problems and applications

In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuska's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Hong, Qingguo, Kraus, Johannes, Lymbery, Maria, Philo, Fadi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hong, Qingguo
Kraus, Johannes
Lymbery, Maria
Philo, Fadi
description In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuska's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory, in a combined abstract norm. The construction suggests to form the latter from individual fitted norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot's equations.
doi_str_mv 10.48550/arxiv.2103.09357
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2503043888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503043888</sourcerecordid><originalsourceid>FETCH-LOGICAL-a957-75f9604ccc439a1a021b013c11ae67d4ac9e8e64b7f13b2afd01698a4a86eab93</originalsourceid><addsrcrecordid>eNotzktLAzEYheEgCJbaH-Au4HpqrjPJshRvUHDTffmSSWhqOhmTjLX_3gFdnc3h4UXogZK1UFKSJ8g_4XvNKOFrornsbtCCcU4bJRi7Q6tSToQQ1nZMSr5Axw0e3AWPGWwNFiL2Gc7ukvIn9injenS4VDAhhnrFMEC8llBw8nh0uU7ZuB4X6PvomjGFoc5QMtGdy_ztMYxjnNEa0lDu0a2HWNzqf5do__K83741u4_X9-1m14CWXdNJr1sirLWCa6BAGDWEckspuLbrBVjtlGuF6TzlhoHvCW21AgGqdWA0X6LHP3YO-ZpcqYdTmvLcXQ5MEk4EV0rxX9ckWoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503043888</pqid></control><display><type>article</type><title>A new practical framework for the stability analysis of perturbed saddle-point problems and applications</title><source>Publicly Available Content Database</source><creator>Hong, Qingguo ; Kraus, Johannes ; Lymbery, Maria ; Philo, Fadi</creator><creatorcontrib>Hong, Qingguo ; Kraus, Johannes ; Lymbery, Maria ; Philo, Fadi</creatorcontrib><description>In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuska's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory, in a combined abstract norm. The construction suggests to form the latter from individual fitted norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot's equations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2103.09357</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Norms ; Parameter robustness ; Saddle points ; Stability analysis</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2503043888?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Hong, Qingguo</creatorcontrib><creatorcontrib>Kraus, Johannes</creatorcontrib><creatorcontrib>Lymbery, Maria</creatorcontrib><creatorcontrib>Philo, Fadi</creatorcontrib><title>A new practical framework for the stability analysis of perturbed saddle-point problems and applications</title><title>arXiv.org</title><description>In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuska's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory, in a combined abstract norm. The construction suggests to form the latter from individual fitted norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot's equations.</description><subject>Norms</subject><subject>Parameter robustness</subject><subject>Saddle points</subject><subject>Stability analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzktLAzEYheEgCJbaH-Au4HpqrjPJshRvUHDTffmSSWhqOhmTjLX_3gFdnc3h4UXogZK1UFKSJ8g_4XvNKOFrornsbtCCcU4bJRi7Q6tSToQQ1nZMSr5Axw0e3AWPGWwNFiL2Gc7ukvIn9injenS4VDAhhnrFMEC8llBw8nh0uU7ZuB4X6PvomjGFoc5QMtGdy_ztMYxjnNEa0lDu0a2HWNzqf5do__K83741u4_X9-1m14CWXdNJr1sirLWCa6BAGDWEckspuLbrBVjtlGuF6TzlhoHvCW21AgGqdWA0X6LHP3YO-ZpcqYdTmvLcXQ5MEk4EV0rxX9ckWoc</recordid><startdate>20220925</startdate><enddate>20220925</enddate><creator>Hong, Qingguo</creator><creator>Kraus, Johannes</creator><creator>Lymbery, Maria</creator><creator>Philo, Fadi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220925</creationdate><title>A new practical framework for the stability analysis of perturbed saddle-point problems and applications</title><author>Hong, Qingguo ; Kraus, Johannes ; Lymbery, Maria ; Philo, Fadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a957-75f9604ccc439a1a021b013c11ae67d4ac9e8e64b7f13b2afd01698a4a86eab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Norms</topic><topic>Parameter robustness</topic><topic>Saddle points</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Qingguo</creatorcontrib><creatorcontrib>Kraus, Johannes</creatorcontrib><creatorcontrib>Lymbery, Maria</creatorcontrib><creatorcontrib>Philo, Fadi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Qingguo</au><au>Kraus, Johannes</au><au>Lymbery, Maria</au><au>Philo, Fadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new practical framework for the stability analysis of perturbed saddle-point problems and applications</atitle><jtitle>arXiv.org</jtitle><date>2022-09-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babuska's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babuska-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory, in a combined abstract norm. The construction suggests to form the latter from individual fitted norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot's equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2103.09357</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2503043888
source Publicly Available Content Database
subjects Norms
Parameter robustness
Saddle points
Stability analysis
title A new practical framework for the stability analysis of perturbed saddle-point problems and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20practical%20framework%20for%20the%20stability%20analysis%20of%20perturbed%20saddle-point%20problems%20and%20applications&rft.jtitle=arXiv.org&rft.au=Hong,%20Qingguo&rft.date=2022-09-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2103.09357&rft_dat=%3Cproquest%3E2503043888%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a957-75f9604ccc439a1a021b013c11ae67d4ac9e8e64b7f13b2afd01698a4a86eab93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503043888&rft_id=info:pmid/&rfr_iscdi=true