Loading…

A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media

•New semi-analytical method for solving the homogenization boundary value problem.•Computes the effective diffusivity for block locally-isotropic heterogeneous media.•New method can capture highly complex heterogeneous geometries.•Faster than a standard finite volume method.•Potential to speed up co...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling 2021-04, Vol.92, p.23-43
Main Authors: March, Nathan G., Carr, Elliot J., Turner, Ian W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3
cites cdi_FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3
container_end_page 43
container_issue
container_start_page 23
container_title Applied Mathematical Modelling
container_volume 92
creator March, Nathan G.
Carr, Elliot J.
Turner, Ian W.
description •New semi-analytical method for solving the homogenization boundary value problem.•Computes the effective diffusivity for block locally-isotropic heterogeneous media.•New method can capture highly complex heterogeneous geometries.•Faster than a standard finite volume method.•Potential to speed up coarse-scale simulations of diffusion in heterogeneous media. Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a two-dimensional grid of rectangular blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.
doi_str_mv 10.1016/j.apm.2020.09.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503171901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X20305424</els_id><sourcerecordid>2503171901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3</originalsourceid><addsrcrecordid>eNp9UMtu2zAQFIoEiOv0A3Ij0LOUJSVaFnoygj4CBMglBXojltTKpkuJLkkZcL4gn10a7qGnXPaFncHMFMUdh4oDX93vKzyMlQABFXQVCPGhWEANbdlB8-vqv_mm-BjjHgBk3hbF24YNGBNDt_XBpt3IBh9YpNGWOKE7JWvQuROL3h3ttGVpR2znR7-lyb5isn5i2s9Tj-HEjuhmYofgtaMLj3be_Ga5nDlKG30K_mAN21GicOYgP0c2Um_xtrge0EX69K8vi5_fvr48_Cifnr8_PmyeSlMLmcrVuu3b1apra9GsJUFNEvuON9pII7XGPh-EaOXQNCgl1rITGnW7lrUAJKnrZfH5wpt1_pkpJrX3c8hWoxISat7yDnj-4pcvE3yMgQZ1CHbMJhUHdQ5c7VUOXJ0DV9CpHHjGfLlgKMs_WgoqGkuTye4CmaR6b99B_wWGs4wF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503171901</pqid></control><display><type>article</type><title>A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Taylor &amp; Francis</source><source>ScienceDirect Journals</source><creator>March, Nathan G. ; Carr, Elliot J. ; Turner, Ian W.</creator><creatorcontrib>March, Nathan G. ; Carr, Elliot J. ; Turner, Ian W.</creatorcontrib><description>•New semi-analytical method for solving the homogenization boundary value problem.•Computes the effective diffusivity for block locally-isotropic heterogeneous media.•New method can capture highly complex heterogeneous geometries.•Faster than a standard finite volume method.•Potential to speed up coarse-scale simulations of diffusion in heterogeneous media. Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a two-dimensional grid of rectangular blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2020.09.022</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Algorithms ; Boundary value problems ; Computational efficiency ; Computer simulation ; Computing costs ; Computing time ; Diffusion barriers ; Diffusion rate ; Diffusivity ; Direct numerical simulation ; Effective diffusivity ; Finite volume method ; Heterogeneous media ; Homogenization ; Mathematical analysis ; Mathematical models ; Semi-analytical solution ; Steady-state diffusion equation</subject><ispartof>Applied Mathematical Modelling, 2021-04, Vol.92, p.23-43</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3</citedby><cites>FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3</cites><orcidid>0000-0001-9972-927X ; 0000-0002-2818-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>March, Nathan G.</creatorcontrib><creatorcontrib>Carr, Elliot J.</creatorcontrib><creatorcontrib>Turner, Ian W.</creatorcontrib><title>A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media</title><title>Applied Mathematical Modelling</title><description>•New semi-analytical method for solving the homogenization boundary value problem.•Computes the effective diffusivity for block locally-isotropic heterogeneous media.•New method can capture highly complex heterogeneous geometries.•Faster than a standard finite volume method.•Potential to speed up coarse-scale simulations of diffusion in heterogeneous media. Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a two-dimensional grid of rectangular blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Computing time</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Diffusivity</subject><subject>Direct numerical simulation</subject><subject>Effective diffusivity</subject><subject>Finite volume method</subject><subject>Heterogeneous media</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Semi-analytical solution</subject><subject>Steady-state diffusion equation</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtu2zAQFIoEiOv0A3Ij0LOUJSVaFnoygj4CBMglBXojltTKpkuJLkkZcL4gn10a7qGnXPaFncHMFMUdh4oDX93vKzyMlQABFXQVCPGhWEANbdlB8-vqv_mm-BjjHgBk3hbF24YNGBNDt_XBpt3IBh9YpNGWOKE7JWvQuROL3h3ttGVpR2znR7-lyb5isn5i2s9Tj-HEjuhmYofgtaMLj3be_Ga5nDlKG30K_mAN21GicOYgP0c2Um_xtrge0EX69K8vi5_fvr48_Cifnr8_PmyeSlMLmcrVuu3b1apra9GsJUFNEvuON9pII7XGPh-EaOXQNCgl1rITGnW7lrUAJKnrZfH5wpt1_pkpJrX3c8hWoxISat7yDnj-4pcvE3yMgQZ1CHbMJhUHdQ5c7VUOXJ0DV9CpHHjGfLlgKMs_WgoqGkuTye4CmaR6b99B_wWGs4wF</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>March, Nathan G.</creator><creator>Carr, Elliot J.</creator><creator>Turner, Ian W.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9972-927X</orcidid><orcidid>https://orcid.org/0000-0002-2818-9242</orcidid></search><sort><creationdate>202104</creationdate><title>A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media</title><author>March, Nathan G. ; Carr, Elliot J. ; Turner, Ian W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Computing time</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Diffusivity</topic><topic>Direct numerical simulation</topic><topic>Effective diffusivity</topic><topic>Finite volume method</topic><topic>Heterogeneous media</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Semi-analytical solution</topic><topic>Steady-state diffusion equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>March, Nathan G.</creatorcontrib><creatorcontrib>Carr, Elliot J.</creatorcontrib><creatorcontrib>Turner, Ian W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>March, Nathan G.</au><au>Carr, Elliot J.</au><au>Turner, Ian W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-04</date><risdate>2021</risdate><volume>92</volume><spage>23</spage><epage>43</epage><pages>23-43</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•New semi-analytical method for solving the homogenization boundary value problem.•Computes the effective diffusivity for block locally-isotropic heterogeneous media.•New method can capture highly complex heterogeneous geometries.•Faster than a standard finite volume method.•Potential to speed up coarse-scale simulations of diffusion in heterogeneous media. Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a two-dimensional grid of rectangular blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2020.09.022</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9972-927X</orcidid><orcidid>https://orcid.org/0000-0002-2818-9242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2021-04, Vol.92, p.23-43
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2503171901
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Taylor & Francis; ScienceDirect Journals
subjects Algorithms
Boundary value problems
Computational efficiency
Computer simulation
Computing costs
Computing time
Diffusion barriers
Diffusion rate
Diffusivity
Direct numerical simulation
Effective diffusivity
Finite volume method
Heterogeneous media
Homogenization
Mathematical analysis
Mathematical models
Semi-analytical solution
Steady-state diffusion equation
title A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20algorithm%20for%20semi-analytically%20solving%20the%20homogenization%20boundary%20value%20problem%20for%20block%20locally-isotropic%20heterogeneous%20media&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=March,%20Nathan%20G.&rft.date=2021-04&rft.volume=92&rft.spage=23&rft.epage=43&rft.pages=23-43&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2020.09.022&rft_dat=%3Cproquest_cross%3E2503171901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-687d7669732485e03e5ad914bc5c5bbad3e52275f44a55a3592bab785320ae5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503171901&rft_id=info:pmid/&rfr_iscdi=true