Loading…

Spheres of legislation: polarization and most influential nodes in behavioral context

Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different context...

Full description

Saved in:
Bibliographic Details
Published in:Computational social networks 2021-03, Vol.8 (1), Article 14
Main Authors: Phillips, Andrew C., Irfan, Mohammad T., Ostertag-Hill, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3022-5fb2f8d48ef76a03d6086a78849b245614ecffe4afcd0d365ac3d5ac7924fb463
container_end_page
container_issue 1
container_start_page
container_title Computational social networks
container_volume 8
creator Phillips, Andrew C.
Irfan, Mohammad T.
Ostertag-Hill, Luca
description Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.
doi_str_mv 10.1186/s40649-021-00091-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503358938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503358938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3022-5fb2f8d48ef76a03d6086a78849b245614ecffe4afcd0d365ac3d5ac7924fb463</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXFfzapq6k8EXDLjQWYe0SWYydJKatKL-euNU0JWb--I758IB4ByjS4wFv0oMcVYXiOACIVTjghyBGcF1VTCK2fGf-RQsUtplCHPKcFXNwPq535poEgwWdmbjUqcGF_w17EOnovs8bFB5DfchDdB5243GD0510Aeddc7DxmzVmwsx39rgB_M-nIETq7pkFj99DtZ3ty_Lh2L1dP-4vFkVLUWEFKVtiBWaCWMrrhDVHAmuKiFY3RBWcsxMa61hyrYaacpL1VKdS1UTZhvG6RxcTL59DK-jSYPchTH6_FKSElFaipqKTJGJamNIKRor--j2Kn5IjOR3gnJKUOYE5SFBSbKITqKUYb8x8df6H9UXoOx0cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503358938</pqid></control><display><type>article</type><title>Spheres of legislation: polarization and most influential nodes in behavioral context</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>ProQuest - Publicly Available Content Database</source><creator>Phillips, Andrew C. ; Irfan, Mohammad T. ; Ostertag-Hill, Luca</creator><creatorcontrib>Phillips, Andrew C. ; Irfan, Mohammad T. ; Ostertag-Hill, Luca</creatorcontrib><description>Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.</description><identifier>ISSN: 2197-4314</identifier><identifier>EISSN: 2197-4314</identifier><identifier>DOI: 10.1186/s40649-021-00091-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Clustering ; Complex Networks ; Context ; Data-driven Science ; Database Management ; Game theory ; Industrial and Production Engineering ; Industrial Organization ; Legislation ; Machine learning ; Mathematical Models of Cognitive Processes and Neural Networks ; Mathematics ; Mathematics and Statistics ; Media Sociology ; Modeling and Theory Building ; Network analysis ; Nodes ; Polarization ; Social networks ; Spheres</subject><ispartof>Computational social networks, 2021-03, Vol.8 (1), Article 14</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3022-5fb2f8d48ef76a03d6086a78849b245614ecffe4afcd0d365ac3d5ac7924fb463</cites><orcidid>0000-0001-7442-1623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2503358938?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Phillips, Andrew C.</creatorcontrib><creatorcontrib>Irfan, Mohammad T.</creatorcontrib><creatorcontrib>Ostertag-Hill, Luca</creatorcontrib><title>Spheres of legislation: polarization and most influential nodes in behavioral context</title><title>Computational social networks</title><addtitle>Comput Soc Netw</addtitle><description>Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Complex Networks</subject><subject>Context</subject><subject>Data-driven Science</subject><subject>Database Management</subject><subject>Game theory</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Organization</subject><subject>Legislation</subject><subject>Machine learning</subject><subject>Mathematical Models of Cognitive Processes and Neural Networks</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Media Sociology</subject><subject>Modeling and Theory Building</subject><subject>Network analysis</subject><subject>Nodes</subject><subject>Polarization</subject><subject>Social networks</subject><subject>Spheres</subject><issn>2197-4314</issn><issn>2197-4314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXFfzapq6k8EXDLjQWYe0SWYydJKatKL-euNU0JWb--I758IB4ByjS4wFv0oMcVYXiOACIVTjghyBGcF1VTCK2fGf-RQsUtplCHPKcFXNwPq535poEgwWdmbjUqcGF_w17EOnovs8bFB5DfchDdB5243GD0510Aeddc7DxmzVmwsx39rgB_M-nIETq7pkFj99DtZ3ty_Lh2L1dP-4vFkVLUWEFKVtiBWaCWMrrhDVHAmuKiFY3RBWcsxMa61hyrYaacpL1VKdS1UTZhvG6RxcTL59DK-jSYPchTH6_FKSElFaipqKTJGJamNIKRor--j2Kn5IjOR3gnJKUOYE5SFBSbKITqKUYb8x8df6H9UXoOx0cg</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Phillips, Andrew C.</creator><creator>Irfan, Mohammad T.</creator><creator>Ostertag-Hill, Luca</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7442-1623</orcidid></search><sort><creationdate>20210321</creationdate><title>Spheres of legislation: polarization and most influential nodes in behavioral context</title><author>Phillips, Andrew C. ; Irfan, Mohammad T. ; Ostertag-Hill, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3022-5fb2f8d48ef76a03d6086a78849b245614ecffe4afcd0d365ac3d5ac7924fb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Complex Networks</topic><topic>Context</topic><topic>Data-driven Science</topic><topic>Database Management</topic><topic>Game theory</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Organization</topic><topic>Legislation</topic><topic>Machine learning</topic><topic>Mathematical Models of Cognitive Processes and Neural Networks</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Media Sociology</topic><topic>Modeling and Theory Building</topic><topic>Network analysis</topic><topic>Nodes</topic><topic>Polarization</topic><topic>Social networks</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Andrew C.</creatorcontrib><creatorcontrib>Irfan, Mohammad T.</creatorcontrib><creatorcontrib>Ostertag-Hill, Luca</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Andrew C.</au><au>Irfan, Mohammad T.</au><au>Ostertag-Hill, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spheres of legislation: polarization and most influential nodes in behavioral context</atitle><jtitle>Computational social networks</jtitle><stitle>Comput Soc Netw</stitle><date>2021-03-21</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><artnum>14</artnum><issn>2197-4314</issn><eissn>2197-4314</eissn><abstract>Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data? We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes? To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40649-021-00091-2</doi><orcidid>https://orcid.org/0000-0001-7442-1623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2197-4314
ispartof Computational social networks, 2021-03, Vol.8 (1), Article 14
issn 2197-4314
2197-4314
language eng
recordid cdi_proquest_journals_2503358938
source Springer Nature - SpringerLink Journals - Fully Open Access ; ProQuest - Publicly Available Content Database
subjects Algorithms
Clustering
Complex Networks
Context
Data-driven Science
Database Management
Game theory
Industrial and Production Engineering
Industrial Organization
Legislation
Machine learning
Mathematical Models of Cognitive Processes and Neural Networks
Mathematics
Mathematics and Statistics
Media Sociology
Modeling and Theory Building
Network analysis
Nodes
Polarization
Social networks
Spheres
title Spheres of legislation: polarization and most influential nodes in behavioral context
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spheres%20of%20legislation:%20polarization%20and%20most%20influential%20nodes%20in%20behavioral%20context&rft.jtitle=Computational%20social%20networks&rft.au=Phillips,%20Andrew%20C.&rft.date=2021-03-21&rft.volume=8&rft.issue=1&rft.artnum=14&rft.issn=2197-4314&rft.eissn=2197-4314&rft_id=info:doi/10.1186/s40649-021-00091-2&rft_dat=%3Cproquest_cross%3E2503358938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3022-5fb2f8d48ef76a03d6086a78849b245614ecffe4afcd0d365ac3d5ac7924fb463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503358938&rft_id=info:pmid/&rfr_iscdi=true