Loading…
Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator
•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•T...
Saved in:
Published in: | Computers and electronics in agriculture 2021-02, Vol.181, p.105946, Article 105946 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433 |
container_end_page | |
container_issue | |
container_start_page | 105946 |
container_title | Computers and electronics in agriculture |
container_volume | 181 |
creator | Yang, Hualin Chen, Long Ma, Zhibin Chen, Miaoting Zhong, Yan Deng, Fang Li, Maozhen |
description | •A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied.
Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution. |
doi_str_mv | 10.1016/j.compag.2020.105946 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503463852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169920331513</els_id><sourcerecordid>2503463852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU6xYyeON0ioPKVKbGBtHGfSOqRxajuV-vckCmtW89C9dzQHoVtKVpTQ_L5ZGbfv9XaVknRaZZLnZ2hBC5EmghJxjhajrEhoLuUlugqhIeMsC7FA3-vROUTw-GiDdV1S6gAV3tntLjkMurXxhCNorIfo9jpag_t2MD-222LvShfxEKb-Cdqoca-9blto8V53th9aHZ2_Rhe1bgPc_NUl-np5_ly_JZuP1_f14yYxjPGYAJeSCi4F5SlIkdU1kLLSUhSZIQXNKiiB5CxL05rxqiSCs8rQitdaUlNyxpbobs7tvTsMEKJq3OC78aRKM8J4zoosHVV8VhnvQvBQq97bvfYnRYmaWKpGzSzVxFLNLEfbw2yD8YOjBa-CsdAZqKwHE1Xl7P8Bvwa8gAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503463852</pqid></control><display><type>article</type><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><source>Elsevier</source><creator>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</creator><creatorcontrib>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</creatorcontrib><description>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied.
Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105946</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Ant colony optimization ; Automatic control ; Computer vision ; Delta parallel manipulator ; Machine learning ; Manipulators ; Motion control ; Particle swarm optimization ; Path planning ; Plucking ; Recognition ; Robot arms ; Support vector machines ; Tea plucking robot ; Trajectory planning</subject><ispartof>Computers and electronics in agriculture, 2021-02, Vol.181, p.105946, Article 105946</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</citedby><cites>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Hualin</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Chen, Miaoting</creatorcontrib><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Deng, Fang</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><title>Computers and electronics in agriculture</title><description>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied.
Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Automatic control</subject><subject>Computer vision</subject><subject>Delta parallel manipulator</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Plucking</subject><subject>Recognition</subject><subject>Robot arms</subject><subject>Support vector machines</subject><subject>Tea plucking robot</subject><subject>Trajectory planning</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU6xYyeON0ioPKVKbGBtHGfSOqRxajuV-vckCmtW89C9dzQHoVtKVpTQ_L5ZGbfv9XaVknRaZZLnZ2hBC5EmghJxjhajrEhoLuUlugqhIeMsC7FA3-vROUTw-GiDdV1S6gAV3tntLjkMurXxhCNorIfo9jpag_t2MD-222LvShfxEKb-Cdqoca-9blto8V53th9aHZ2_Rhe1bgPc_NUl-np5_ly_JZuP1_f14yYxjPGYAJeSCi4F5SlIkdU1kLLSUhSZIQXNKiiB5CxL05rxqiSCs8rQitdaUlNyxpbobs7tvTsMEKJq3OC78aRKM8J4zoosHVV8VhnvQvBQq97bvfYnRYmaWKpGzSzVxFLNLEfbw2yD8YOjBa-CsdAZqKwHE1Xl7P8Bvwa8gAA</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Yang, Hualin</creator><creator>Chen, Long</creator><creator>Ma, Zhibin</creator><creator>Chen, Miaoting</creator><creator>Zhong, Yan</creator><creator>Deng, Fang</creator><creator>Li, Maozhen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202102</creationdate><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><author>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Automatic control</topic><topic>Computer vision</topic><topic>Delta parallel manipulator</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Plucking</topic><topic>Recognition</topic><topic>Robot arms</topic><topic>Support vector machines</topic><topic>Tea plucking robot</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hualin</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Chen, Miaoting</creatorcontrib><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Deng, Fang</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hualin</au><au>Chen, Long</au><au>Ma, Zhibin</au><au>Chen, Miaoting</au><au>Zhong, Yan</au><au>Deng, Fang</au><au>Li, Maozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-02</date><risdate>2021</risdate><volume>181</volume><spage>105946</spage><pages>105946-</pages><artnum>105946</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied.
Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105946</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1699 |
ispartof | Computers and electronics in agriculture, 2021-02, Vol.181, p.105946, Article 105946 |
issn | 0168-1699 1872-7107 |
language | eng |
recordid | cdi_proquest_journals_2503463852 |
source | Elsevier |
subjects | Algorithms Ant colony optimization Automatic control Computer vision Delta parallel manipulator Machine learning Manipulators Motion control Particle swarm optimization Path planning Plucking Recognition Robot arms Support vector machines Tea plucking robot Trajectory planning |
title | Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20vision-based%20high-quality%20tea%20automatic%20plucking%20robot%20using%20Delta%20parallel%20manipulator&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Yang,%20Hualin&rft.date=2021-02&rft.volume=181&rft.spage=105946&rft.pages=105946-&rft.artnum=105946&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105946&rft_dat=%3Cproquest_cross%3E2503463852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503463852&rft_id=info:pmid/&rfr_iscdi=true |