Loading…

Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator

•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•T...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2021-02, Vol.181, p.105946, Article 105946
Main Authors: Yang, Hualin, Chen, Long, Ma, Zhibin, Chen, Miaoting, Zhong, Yan, Deng, Fang, Li, Maozhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433
cites cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433
container_end_page
container_issue
container_start_page 105946
container_title Computers and electronics in agriculture
container_volume 181
creator Yang, Hualin
Chen, Long
Ma, Zhibin
Chen, Miaoting
Zhong, Yan
Deng, Fang
Li, Maozhen
description •A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied. Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.
doi_str_mv 10.1016/j.compag.2020.105946
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503463852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169920331513</els_id><sourcerecordid>2503463852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU6xYyeON0ioPKVKbGBtHGfSOqRxajuV-vckCmtW89C9dzQHoVtKVpTQ_L5ZGbfv9XaVknRaZZLnZ2hBC5EmghJxjhajrEhoLuUlugqhIeMsC7FA3-vROUTw-GiDdV1S6gAV3tntLjkMurXxhCNorIfo9jpag_t2MD-222LvShfxEKb-Cdqoca-9blto8V53th9aHZ2_Rhe1bgPc_NUl-np5_ly_JZuP1_f14yYxjPGYAJeSCi4F5SlIkdU1kLLSUhSZIQXNKiiB5CxL05rxqiSCs8rQitdaUlNyxpbobs7tvTsMEKJq3OC78aRKM8J4zoosHVV8VhnvQvBQq97bvfYnRYmaWKpGzSzVxFLNLEfbw2yD8YOjBa-CsdAZqKwHE1Xl7P8Bvwa8gAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503463852</pqid></control><display><type>article</type><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><source>Elsevier</source><creator>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</creator><creatorcontrib>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</creatorcontrib><description>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied. Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105946</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Ant colony optimization ; Automatic control ; Computer vision ; Delta parallel manipulator ; Machine learning ; Manipulators ; Motion control ; Particle swarm optimization ; Path planning ; Plucking ; Recognition ; Robot arms ; Support vector machines ; Tea plucking robot ; Trajectory planning</subject><ispartof>Computers and electronics in agriculture, 2021-02, Vol.181, p.105946, Article 105946</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</citedby><cites>FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Hualin</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Chen, Miaoting</creatorcontrib><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Deng, Fang</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><title>Computers and electronics in agriculture</title><description>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied. Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Automatic control</subject><subject>Computer vision</subject><subject>Delta parallel manipulator</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Plucking</subject><subject>Recognition</subject><subject>Robot arms</subject><subject>Support vector machines</subject><subject>Tea plucking robot</subject><subject>Trajectory planning</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU6xYyeON0ioPKVKbGBtHGfSOqRxajuV-vckCmtW89C9dzQHoVtKVpTQ_L5ZGbfv9XaVknRaZZLnZ2hBC5EmghJxjhajrEhoLuUlugqhIeMsC7FA3-vROUTw-GiDdV1S6gAV3tntLjkMurXxhCNorIfo9jpag_t2MD-222LvShfxEKb-Cdqoca-9blto8V53th9aHZ2_Rhe1bgPc_NUl-np5_ly_JZuP1_f14yYxjPGYAJeSCi4F5SlIkdU1kLLSUhSZIQXNKiiB5CxL05rxqiSCs8rQitdaUlNyxpbobs7tvTsMEKJq3OC78aRKM8J4zoosHVV8VhnvQvBQq97bvfYnRYmaWKpGzSzVxFLNLEfbw2yD8YOjBa-CsdAZqKwHE1Xl7P8Bvwa8gAA</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Yang, Hualin</creator><creator>Chen, Long</creator><creator>Ma, Zhibin</creator><creator>Chen, Miaoting</creator><creator>Zhong, Yan</creator><creator>Deng, Fang</creator><creator>Li, Maozhen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202102</creationdate><title>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</title><author>Yang, Hualin ; Chen, Long ; Ma, Zhibin ; Chen, Miaoting ; Zhong, Yan ; Deng, Fang ; Li, Maozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Automatic control</topic><topic>Computer vision</topic><topic>Delta parallel manipulator</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Plucking</topic><topic>Recognition</topic><topic>Robot arms</topic><topic>Support vector machines</topic><topic>Tea plucking robot</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hualin</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ma, Zhibin</creatorcontrib><creatorcontrib>Chen, Miaoting</creatorcontrib><creatorcontrib>Zhong, Yan</creatorcontrib><creatorcontrib>Deng, Fang</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hualin</au><au>Chen, Long</au><au>Ma, Zhibin</au><au>Chen, Miaoting</au><au>Zhong, Yan</au><au>Deng, Fang</au><au>Li, Maozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-02</date><risdate>2021</risdate><volume>181</volume><spage>105946</spage><pages>105946-</pages><artnum>105946</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•A complete solution of the high-quality tea automatic plucking robot is presented.•The PSO-SVM algorithm is proposed to recognize the tender tea shoots.•The YOLOv3 model is developed to localize the plucking point.•The improved ACA is developed for path planning of the Delta parallel manipulator.•The feasibility and effectiveness of the presented solution is studied. Aiming to reduce the labour cost and improve the competitiveness of the tea production, this paper presents a complete solution, including the mechanical structure, the visual recognition system (VRS) and the motion control system of the high-quality tea automatic plucking robot. The design objectives involve high reliability and stability, ease of maintenance, cost-effectiveness, accurate recognition and localization of tea shoots, and high-efficient plucking manipulation. The VRS is established using the computer vision together with corresponding machine learning algorithms, where the Particle swarm optimization-Support vector machine algorithm and the deep convolutional neural YOLOv3 model are developed to recognize the tender tea shoots and localize the plucking point, according to the images captured by the global and local cameras, respectively. The Delta parallel manipulator equipped with a shear cutter is adopted to execute the trajectory tracking and tea plucking operations. The improved ant colony algorithm is utilized for path planning and trajectory smoothing of the manipulator. Simulation and laboratory platform experiment results verify the feasibility and effectiveness of the presented solution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105946</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2021-02, Vol.181, p.105946, Article 105946
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2503463852
source Elsevier
subjects Algorithms
Ant colony optimization
Automatic control
Computer vision
Delta parallel manipulator
Machine learning
Manipulators
Motion control
Particle swarm optimization
Path planning
Plucking
Recognition
Robot arms
Support vector machines
Tea plucking robot
Trajectory planning
title Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20vision-based%20high-quality%20tea%20automatic%20plucking%20robot%20using%20Delta%20parallel%20manipulator&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Yang,%20Hualin&rft.date=2021-02&rft.volume=181&rft.spage=105946&rft.pages=105946-&rft.artnum=105946&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105946&rft_dat=%3Cproquest_cross%3E2503463852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e49917497142e975ffe0bda9785c0815debe063522f34db0743dc1d4fa91cb433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503463852&rft_id=info:pmid/&rfr_iscdi=true