Loading…
Econometric analysis of production networks with dominant units
This paper introduces the notions of strongly and weakly dominant units for networks, and shows that pervasiveness of shocks to a network is measured by the degree of dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape parameter of the power law fitted to the net...
Saved in:
Published in: | Journal of econometrics 2020-12, Vol.219 (2), p.507-541 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663 |
container_end_page | 541 |
container_issue | 2 |
container_start_page | 507 |
container_title | Journal of econometrics |
container_volume | 219 |
creator | Pesaran, M. Hashem Yang, Cynthia Fan |
description | This paper introduces the notions of strongly and weakly dominant units for networks, and shows that pervasiveness of shocks to a network is measured by the degree of dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape parameter of the power law fitted to the network outdegrees. New cross-section and panel extremum estimators of the degree of dominance in networks are proposed, and their asymptotic properties investigated. The small sample properties of the proposed estimators are examined by Monte Carlo experiments, and their use is illustrated by an empirical application to US input–output tables. |
doi_str_mv | 10.1016/j.jeconom.2020.03.014 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2503464251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A648513498</galeid><els_id>S0304407620301093</els_id><sourcerecordid>A648513498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QRgQ3M14M5NkMqsipT5AcKPrkGaSmrFNapKx-u9Nbfeu7uY7h3M_hK4wVBgwux2qQSvv_LqqoYYKmgowOUITzNu6ZLyjx2gCDZCSQMtO0VmMAwBQwpsJms7_kjoFqwrp5Oon2lh4U2yC70eVrHeF02nrw0cstja9F71fWyddKkZnU7xAJ0auor483HP0dj9_nT2Wzy8PT7O751IRDqnkWBHSKqMlMZRqsmgXBEzXyZ71nQFumKEKNMWULzB00GHaGMww6TnvWsaac3S97827Pkcdkxj8GPLeKGoKDWGkpjhTN3tqKVdaWJd_S_o7LeUYoxB3jPAMkY5nkO5BFXyMQRuxCXYtw4_AIHZSxSAOUsVOqoBGZKk5N93ndP71y-ogorLaKd3boFUSvbf_NPwC4-WBxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503464251</pqid></control><display><type>article</type><title>Econometric analysis of production networks with dominant units</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Pesaran, M. Hashem ; Yang, Cynthia Fan</creator><creatorcontrib>Pesaran, M. Hashem ; Yang, Cynthia Fan</creatorcontrib><description>This paper introduces the notions of strongly and weakly dominant units for networks, and shows that pervasiveness of shocks to a network is measured by the degree of dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape parameter of the power law fitted to the network outdegrees. New cross-section and panel extremum estimators of the degree of dominance in networks are proposed, and their asymptotic properties investigated. The small sample properties of the proposed estimators are examined by Monte Carlo experiments, and their use is illustrated by an empirical application to US input–output tables.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.03.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aggregate fluctuations ; Analysis ; Asymptotic methods ; Degree of pervasiveness ; Dominance ; Extremum estimator ; Input–output tables ; Mathematical models ; Mechanical properties ; Monte Carlo simulation ; Neural networks ; Outdegrees ; Power law ; Seminars ; Spatial models ; Strongly and weakly dominant units ; United States economic conditions ; US economy</subject><ispartof>Journal of econometrics, 2020-12, Vol.219 (2), p.507-541</ispartof><rights>2020 Elsevier B.V.</rights><rights>COPYRIGHT 2020 Elsevier Science Publishers</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663</citedby><cites>FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407620301093$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3446,3550,27903,27904,33202,45971,45981</link.rule.ids></links><search><creatorcontrib>Pesaran, M. Hashem</creatorcontrib><creatorcontrib>Yang, Cynthia Fan</creatorcontrib><title>Econometric analysis of production networks with dominant units</title><title>Journal of econometrics</title><description>This paper introduces the notions of strongly and weakly dominant units for networks, and shows that pervasiveness of shocks to a network is measured by the degree of dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape parameter of the power law fitted to the network outdegrees. New cross-section and panel extremum estimators of the degree of dominance in networks are proposed, and their asymptotic properties investigated. The small sample properties of the proposed estimators are examined by Monte Carlo experiments, and their use is illustrated by an empirical application to US input–output tables.</description><subject>Aggregate fluctuations</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Degree of pervasiveness</subject><subject>Dominance</subject><subject>Extremum estimator</subject><subject>Input–output tables</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Outdegrees</subject><subject>Power law</subject><subject>Seminars</subject><subject>Spatial models</subject><subject>Strongly and weakly dominant units</subject><subject>United States economic conditions</subject><subject>US economy</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkEtLAzEUhYMoWB8_QRgQ3M14M5NkMqsipT5AcKPrkGaSmrFNapKx-u9Nbfeu7uY7h3M_hK4wVBgwux2qQSvv_LqqoYYKmgowOUITzNu6ZLyjx2gCDZCSQMtO0VmMAwBQwpsJms7_kjoFqwrp5Oon2lh4U2yC70eVrHeF02nrw0cstja9F71fWyddKkZnU7xAJ0auor483HP0dj9_nT2Wzy8PT7O751IRDqnkWBHSKqMlMZRqsmgXBEzXyZ71nQFumKEKNMWULzB00GHaGMww6TnvWsaac3S97827Pkcdkxj8GPLeKGoKDWGkpjhTN3tqKVdaWJd_S_o7LeUYoxB3jPAMkY5nkO5BFXyMQRuxCXYtw4_AIHZSxSAOUsVOqoBGZKk5N93ndP71y-ogorLaKd3boFUSvbf_NPwC4-WBxg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pesaran, M. Hashem</creator><creator>Yang, Cynthia Fan</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20201201</creationdate><title>Econometric analysis of production networks with dominant units</title><author>Pesaran, M. Hashem ; Yang, Cynthia Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregate fluctuations</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Degree of pervasiveness</topic><topic>Dominance</topic><topic>Extremum estimator</topic><topic>Input–output tables</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Outdegrees</topic><topic>Power law</topic><topic>Seminars</topic><topic>Spatial models</topic><topic>Strongly and weakly dominant units</topic><topic>United States economic conditions</topic><topic>US economy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesaran, M. Hashem</creatorcontrib><creatorcontrib>Yang, Cynthia Fan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesaran, M. Hashem</au><au>Yang, Cynthia Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Econometric analysis of production networks with dominant units</atitle><jtitle>Journal of econometrics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>219</volume><issue>2</issue><spage>507</spage><epage>541</epage><pages>507-541</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper introduces the notions of strongly and weakly dominant units for networks, and shows that pervasiveness of shocks to a network is measured by the degree of dominance of its most pervasive unit; shown to be equivalent to the inverse of the shape parameter of the power law fitted to the network outdegrees. New cross-section and panel extremum estimators of the degree of dominance in networks are proposed, and their asymptotic properties investigated. The small sample properties of the proposed estimators are examined by Monte Carlo experiments, and their use is illustrated by an empirical application to US input–output tables.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.03.014</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2020-12, Vol.219 (2), p.507-541 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2503464251 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Aggregate fluctuations Analysis Asymptotic methods Degree of pervasiveness Dominance Extremum estimator Input–output tables Mathematical models Mechanical properties Monte Carlo simulation Neural networks Outdegrees Power law Seminars Spatial models Strongly and weakly dominant units United States economic conditions US economy |
title | Econometric analysis of production networks with dominant units |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Econometric%20analysis%20of%20production%20networks%20with%20dominant%20units&rft.jtitle=Journal%20of%20econometrics&rft.au=Pesaran,%20M.%20Hashem&rft.date=2020-12-01&rft.volume=219&rft.issue=2&rft.spage=507&rft.epage=541&rft.pages=507-541&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.03.014&rft_dat=%3Cgale_proqu%3EA648513498%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-81c447cfea4f55e4b7b40f99ad6d9f08f6f5c0e5158b10909153f1614d8897663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503464251&rft_id=info:pmid/&rft_galeid=A648513498&rfr_iscdi=true |