Loading…

A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

Triboelectric nanogenerators (TENGs) have been developed rapidly into an efficient wind energy collection equipment. Reducing the friction wear and energy loss in breeze energy collection is a research direction worthy of attention. Herein, a flutter-effect-based triboelectric nanogenerator (FE-TENG...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2019-12, Vol.12 (12), p.3018-3023
Main Authors: Hu, Jie, Pu, Xianjie, Yang, Hongmei, Zeng, Qixuan, Tang, Qian, Zhang, Dazhi, Hu, Chenguo, Xi, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Triboelectric nanogenerators (TENGs) have been developed rapidly into an efficient wind energy collection equipment. Reducing the friction wear and energy loss in breeze energy collection is a research direction worthy of attention. Herein, a flutter-effect-based triboelectric nanogenerator (FE-TENG) is designed to collect the breeze energy at low wind speed from arbitrary directions. Distinguishing from previous wind-driven TENGs, the wind-driven part of this device is separated from the TENG units, which not only avoids the wear of friction layers caused by direct wind contact but also reduces the energy loss, therefore, relatively stable electric outputs are obtained with V OC ~ 281 V, I SC ~ 13.4 μA, Q SC ~ 143 nC, and output power ~ 4 mW at the wind speed of 4.5 m/s, respectively. In addition, a real-time wind speed monitoring system based on LabVIEW software with high sensitivity and fast response to wind is achieved relying on the excellent linear relationship between wind speed and electrical output signal. Furthermore, it has been successfully applied as power sources for portable electronics, about 170 commercial light-emitting devices (LEDs) are lighted and a digital watch is successfully driven at the wind speed of 2.9 m/s. This work not only provides a new structure and idea for the future collection of clean and sustainable breeze energy from arbitrary directions but also has great potential in the field of self-powered systems.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-019-2545-y