Loading…
Conductive polymers for stretchable supercapacitors
Stretchable energy storage devices, maintaining the capability of steady operation under large mechanical strain, have become increasing more important with the development of stretchable electronic devices. Stretchable supercapacitors (SSCs), with high power density, modest energy density, and supe...
Saved in:
Published in: | Nano research 2019-09, Vol.12 (9), p.1978-1987 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stretchable energy storage devices, maintaining the capability of steady operation under large mechanical strain, have become increasing more important with the development of stretchable electronic devices. Stretchable supercapacitors (SSCs), with high power density, modest energy density, and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices. Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly(3,4-ehtylenedioxythiophene) (PEDOT), are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity, excellent electrochemical activity, light weight, and high flexibility. Much effort has been devoted to developing stretchable, conductive polymer-based SSCs with different device structures, such as sandwich-type and fiber-shaped type SSCs. This review summarizes the material and structural design for conductive polymer-based SSCs and discusses the challenge and important directions in this emerging field. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-019-2296-9 |