Loading…

Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy

Nanoscale metal organic frameworks (NMOFs) with porous structure and inherent biodegradability are attractive nanomedicine platforms. In addition to conventional particulate NMOFs, two-dimensional (2D) NMOFs are emerging as a unique type of NMOFs which however have been relatively less explored for...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2019-06, Vol.12 (6), p.1307-1312
Main Authors: Zhu, Wenjun, Yang, Yu, Jin, Qiutong, Chao, Yu, Tian, Longlong, Liu, Jingjing, Dong, Ziliang, Liu, Zhuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoscale metal organic frameworks (NMOFs) with porous structure and inherent biodegradability are attractive nanomedicine platforms. In addition to conventional particulate NMOFs, two-dimensional (2D) NMOFs are emerging as a unique type of NMOFs which however have been relatively less explored for nanomedicine applications. Herein, 2D-NMOFs composed of Zn 2+ and tetrakis(4-carboxyphenyl) porphyrin (TCPP) are fabricated and functionalized with polyethylene glycol (PEG). Compared to their particulate counterpart, such 2D-NMOFs show greatly increased drug loading capacity and enhanced light-triggered singlet oxygen production, promising for chemotherapy and photodynamic therapy (PDT), respectively. Utilizing the porphyrin structure of TCPP, our 2D-NMOFs could be labeled with a diagnostic radioisotope, 99m Tc, for single photon emission computer tomography (SPECT) imaging, which reveals efficient tumor homing of those 2D-NMOFs upon intravenous injection. While offering a remarkable synergistic in vivo antitumor effect for the combined chemo-PDT, such 2D-NMOFs show efficient biodegradation and rapid renal clearance. Our work presents the great promise of 2D-NMOFs for nanomedicine applications.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-018-2242-2