Loading…

Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate

Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2020-05, Vol.13 (5), p.1324-1331
Main Authors: Zheng, Lei, Guo, Feng, Kang, Tuo, Yang, Jin, Liu, Ya, Gu, Wei, Zhao, Yanfei, Lin, Hongzhen, Shen, Yanbin, Lu, Wei, Chen, Liwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063
cites cdi_FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063
container_end_page 1331
container_issue 5
container_start_page 1324
container_title Nano research
container_volume 13
creator Zheng, Lei
Guo, Feng
Kang, Tuo
Yang, Jin
Liu, Ya
Gu, Wei
Zhao, Yanfei
Lin, Hongzhen
Shen, Yanbin
Lu, Wei
Chen, Liwei
description Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO 4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.
doi_str_mv 10.1007/s12274-019-2565-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503532464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503532464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz9EkTdLkKIu6woIXvRqy-bPtmm1r0wX77c1axZPOZYaZ93sDD4BLgq8JxuVNIpSWDGGiEOWCo_IIzIhSEuFcxz8zoewUnKW0xVhQwuQMvC7rTRVHmAazjh7Geqjq_Q6apnUe-uawdHCd7z4GZFLyu6_Nrm3aaEbfwzZAV1f-wzhvM2Xi2xhhV7Wpq8zgz8FJMDH5i-8-By_3d8-LJVo9PTwublfIFowNSHlhgig5C46SQjDuLFPSuWAls5YViqhgSMmlDE6RNVbKSK5MsExgS7Ao5uBq8u369n3v06C37b5v8ktNOS54QZlg_6oYLhVXmMqsIpPK9m1KvQ-66-ud6UdNsD6EraewdQ5bH8LWZWboxKSsbTa-_3X-G_oEqwyB3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407959028</pqid></control><display><type>article</type><title>Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate</title><source>Springer Nature</source><creator>Zheng, Lei ; Guo, Feng ; Kang, Tuo ; Yang, Jin ; Liu, Ya ; Gu, Wei ; Zhao, Yanfei ; Lin, Hongzhen ; Shen, Yanbin ; Lu, Wei ; Chen, Liwei</creator><creatorcontrib>Zheng, Lei ; Guo, Feng ; Kang, Tuo ; Yang, Jin ; Liu, Ya ; Gu, Wei ; Zhao, Yanfei ; Lin, Hongzhen ; Shen, Yanbin ; Lu, Wei ; Chen, Liwei</creatorcontrib><description>Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO 4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-019-2565-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Carbon nanotubes ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Dendrites ; Electrochemistry ; Electrode materials ; Flux density ; Hydrophobicity ; Lithium ; Materials Science ; Monolayers ; Nanotechnology ; Passivity ; Research Article ; Self-assembled monolayers ; Self-assembly ; Stability</subject><ispartof>Nano research, 2020-05, Vol.13 (5), p.1324-1331</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063</citedby><cites>FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Kang, Tuo</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Zhao, Yanfei</creatorcontrib><creatorcontrib>Lin, Hongzhen</creatorcontrib><creatorcontrib>Shen, Yanbin</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Chen, Liwei</creatorcontrib><title>Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO 4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon nanotubes</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Dendrites</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Hydrophobicity</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Passivity</subject><subject>Research Article</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Stability</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz9EkTdLkKIu6woIXvRqy-bPtmm1r0wX77c1axZPOZYaZ93sDD4BLgq8JxuVNIpSWDGGiEOWCo_IIzIhSEuFcxz8zoewUnKW0xVhQwuQMvC7rTRVHmAazjh7Geqjq_Q6apnUe-uawdHCd7z4GZFLyu6_Nrm3aaEbfwzZAV1f-wzhvM2Xi2xhhV7Wpq8zgz8FJMDH5i-8-By_3d8-LJVo9PTwublfIFowNSHlhgig5C46SQjDuLFPSuWAls5YViqhgSMmlDE6RNVbKSK5MsExgS7Ao5uBq8u369n3v06C37b5v8ktNOS54QZlg_6oYLhVXmMqsIpPK9m1KvQ-66-ud6UdNsD6EraewdQ5bH8LWZWboxKSsbTa-_3X-G_oEqwyB3Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zheng, Lei</creator><creator>Guo, Feng</creator><creator>Kang, Tuo</creator><creator>Yang, Jin</creator><creator>Liu, Ya</creator><creator>Gu, Wei</creator><creator>Zhao, Yanfei</creator><creator>Lin, Hongzhen</creator><creator>Shen, Yanbin</creator><creator>Lu, Wei</creator><creator>Chen, Liwei</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200501</creationdate><title>Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate</title><author>Zheng, Lei ; Guo, Feng ; Kang, Tuo ; Yang, Jin ; Liu, Ya ; Gu, Wei ; Zhao, Yanfei ; Lin, Hongzhen ; Shen, Yanbin ; Lu, Wei ; Chen, Liwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon nanotubes</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Dendrites</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Hydrophobicity</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Passivity</topic><topic>Research Article</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Kang, Tuo</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><creatorcontrib>Gu, Wei</creatorcontrib><creatorcontrib>Zhao, Yanfei</creatorcontrib><creatorcontrib>Lin, Hongzhen</creatorcontrib><creatorcontrib>Shen, Yanbin</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Chen, Liwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lei</au><au>Guo, Feng</au><au>Kang, Tuo</au><au>Yang, Jin</au><au>Liu, Ya</au><au>Gu, Wei</au><au>Zhao, Yanfei</au><au>Lin, Hongzhen</au><au>Shen, Yanbin</au><au>Lu, Wei</au><au>Chen, Liwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1324</spage><epage>1331</epage><pages>1324-1331</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO 4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-019-2565-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2020-05, Vol.13 (5), p.1324-1331
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503532464
source Springer Nature
subjects Anodes
Atomic/Molecular Structure and Spectra
Batteries
Biomedicine
Biotechnology
Carbon nanotubes
Chemistry and Materials Science
Composite materials
Condensed Matter Physics
Dendrites
Electrochemistry
Electrode materials
Flux density
Hydrophobicity
Lithium
Materials Science
Monolayers
Nanotechnology
Passivity
Research Article
Self-assembled monolayers
Self-assembly
Stability
title Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20stable%20lithium%20anode%20enabled%20by%20self-assembled%20monolayer%20of%20dihexadecanoalkyl%20phosphate&rft.jtitle=Nano%20research&rft.au=Zheng,%20Lei&rft.date=2020-05-01&rft.volume=13&rft.issue=5&rft.spage=1324&rft.epage=1331&rft.pages=1324-1331&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-019-2565-7&rft_dat=%3Cproquest_cross%3E2503532464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-9e6af6754fd213645dc498ddfc84cc43919fa17588fd91b099a859afc460c1063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2407959028&rft_id=info:pmid/&rfr_iscdi=true