Loading…
Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation
One-dimensional titanium dioxide nanorod (TNR)-supported Cu catalysts (2.5 wt.%–12.5 wt.%) were synthesized using deposition-precipitation. X-ray photoelectron spectroscopy, temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support intera...
Saved in:
Published in: | Nano research 2020-02, Vol.13 (2), p.533-542 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One-dimensional titanium dioxide nanorod (TNR)-supported Cu catalysts (2.5 wt.%–12.5 wt.%) were synthesized using deposition-precipitation. X-ray photoelectron spectroscopy, temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support interactions and interfacial active sites that had a profound impact on the catalytic performance. The role of the Cu-TNR interface was investigated by comparing the catalytic activity of Cu-TNR catalysts with that of pure CuO nanoparticles in CO oxidation. The presence of highly dispersed copper species, a high number of interfacial active sites, CO adsorption capacity and surface/lattice oxygen were found to be responsible for the excellent activity of 7.5Cu-TNR (i.e., Cu loading of 7.5 wt.% on TNR). Moreover, the Cu-TNR catalysts followed the Langmuir-Hinshelwood reaction mechanism with 7.5Cu-TNR, exhibiting an apparent activation energy of 44.7 kJ/mol. The TNR-supported Cu catalyst gave the highest interfacial catalytic activity in medium-temperature CO oxidation (120-240 °C) compared to other commonly used supports, including titanium dioxide nanoparticles (TiO
2
-P25), silica (SiO
2
) and alumina (Al
2
O
3
) in which copper species were nonhomogeneously dispersed. This study confirms that medium-temperature CO oxidation is highly sensitive to the morphology and structure of the supporting material. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-020-2647-6 |