Loading…
On the sum of positive divisors functions
Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are de...
Saved in:
Published in: | Research in number theory 2021-06, Vol.7 (2), Article 25 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Research in number theory |
container_volume | 7 |
creator | Erban, Radek Van Gorder, Robert A. |
description | Properties of divisor functions
σ
k
(
n
)
, defined as sums of
k
-th powers of all divisors of
n
, are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at
x
=
0
. Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions. |
doi_str_mv | 10.1007/s40993-021-00240-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503917096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503917096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsBVy6iNzePaZZSfEGhG12HTCbRKXZSk5mC_97UEdy5umdxvnPhI-SSwQ0DqG-zAK05BWQUAAVQdUJmyBWnWkp5WrJEpMAUnJNFzluAkrlAxBm53vTV8O6rPO6qGKp9zN3QHXzVdocux5SrMPZu6GKfL8hZsB_ZL37vnLw-3L-snuh68_i8ultTx5kYaBNqHixHK1CCtgqdD8w7jQ3jHJeNa0WQ0itW2wCtlrUFH7Rt3FI5WWvP5-Rq2t2n-Dn6PJhtHFNfXpqyyDWrQavSwqnlUsw5-WD2qdvZ9GUYmKMVM1kxxYr5sWKOEJ-gXMr9m09_0_9Q39CHY6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503917096</pqid></control><display><type>article</type><title>On the sum of positive divisors functions</title><source>Springer Link</source><creator>Erban, Radek ; Van Gorder, Robert A.</creator><creatorcontrib>Erban, Radek ; Van Gorder, Robert A.</creatorcontrib><description>Properties of divisor functions
σ
k
(
n
)
, defined as sums of
k
-th powers of all divisors of
n
, are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at
x
=
0
. Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-021-00240-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Differential equations ; Dynamical systems ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Number Theory ; Singularity (mathematics) ; Systems analysis</subject><ispartof>Research in number theory, 2021-06, Vol.7 (2), Article 25</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</cites><orcidid>0000-0002-8506-3961 ; 0000-0001-8470-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Van Gorder, Robert A.</creatorcontrib><title>On the sum of positive divisors functions</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Properties of divisor functions
σ
k
(
n
)
, defined as sums of
k
-th powers of all divisors of
n
, are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at
x
=
0
. Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</description><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Singularity (mathematics)</subject><subject>Systems analysis</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsBVy6iNzePaZZSfEGhG12HTCbRKXZSk5mC_97UEdy5umdxvnPhI-SSwQ0DqG-zAK05BWQUAAVQdUJmyBWnWkp5WrJEpMAUnJNFzluAkrlAxBm53vTV8O6rPO6qGKp9zN3QHXzVdocux5SrMPZu6GKfL8hZsB_ZL37vnLw-3L-snuh68_i8ultTx5kYaBNqHixHK1CCtgqdD8w7jQ3jHJeNa0WQ0itW2wCtlrUFH7Rt3FI5WWvP5-Rq2t2n-Dn6PJhtHFNfXpqyyDWrQavSwqnlUsw5-WD2qdvZ9GUYmKMVM1kxxYr5sWKOEJ-gXMr9m09_0_9Q39CHY6o</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Erban, Radek</creator><creator>Van Gorder, Robert A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8506-3961</orcidid><orcidid>https://orcid.org/0000-0001-8470-3763</orcidid></search><sort><creationdate>20210601</creationdate><title>On the sum of positive divisors functions</title><author>Erban, Radek ; Van Gorder, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Singularity (mathematics)</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Van Gorder, Robert A.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erban, Radek</au><au>Van Gorder, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the sum of positive divisors functions</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><artnum>25</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Properties of divisor functions
σ
k
(
n
)
, defined as sums of
k
-th powers of all divisors of
n
, are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at
x
=
0
. Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-021-00240-6</doi><orcidid>https://orcid.org/0000-0002-8506-3961</orcidid><orcidid>https://orcid.org/0000-0001-8470-3763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0160 |
ispartof | Research in number theory, 2021-06, Vol.7 (2), Article 25 |
issn | 2522-0160 2363-9555 |
language | eng |
recordid | cdi_proquest_journals_2503917096 |
source | Springer Link |
subjects | Differential equations Dynamical systems Mathematical analysis Mathematical functions Mathematics Mathematics and Statistics Number Theory Singularity (mathematics) Systems analysis |
title | On the sum of positive divisors functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20sum%20of%20positive%20divisors%20functions&rft.jtitle=Research%20in%20number%20theory&rft.au=Erban,%20Radek&rft.date=2021-06-01&rft.volume=7&rft.issue=2&rft.artnum=25&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-021-00240-6&rft_dat=%3Cproquest_cross%3E2503917096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503917096&rft_id=info:pmid/&rfr_iscdi=true |