Loading…

On the sum of positive divisors functions

Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are de...

Full description

Saved in:
Bibliographic Details
Published in:Research in number theory 2021-06, Vol.7 (2), Article 25
Main Authors: Erban, Radek, Van Gorder, Robert A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3
container_end_page
container_issue 2
container_start_page
container_title Research in number theory
container_volume 7
creator Erban, Radek
Van Gorder, Robert A.
description Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.
doi_str_mv 10.1007/s40993-021-00240-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503917096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503917096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsBVy6iNzePaZZSfEGhG12HTCbRKXZSk5mC_97UEdy5umdxvnPhI-SSwQ0DqG-zAK05BWQUAAVQdUJmyBWnWkp5WrJEpMAUnJNFzluAkrlAxBm53vTV8O6rPO6qGKp9zN3QHXzVdocux5SrMPZu6GKfL8hZsB_ZL37vnLw-3L-snuh68_i8ultTx5kYaBNqHixHK1CCtgqdD8w7jQ3jHJeNa0WQ0itW2wCtlrUFH7Rt3FI5WWvP5-Rq2t2n-Dn6PJhtHFNfXpqyyDWrQavSwqnlUsw5-WD2qdvZ9GUYmKMVM1kxxYr5sWKOEJ-gXMr9m09_0_9Q39CHY6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503917096</pqid></control><display><type>article</type><title>On the sum of positive divisors functions</title><source>Springer Link</source><creator>Erban, Radek ; Van Gorder, Robert A.</creator><creatorcontrib>Erban, Radek ; Van Gorder, Robert A.</creatorcontrib><description>Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-021-00240-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Differential equations ; Dynamical systems ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Number Theory ; Singularity (mathematics) ; Systems analysis</subject><ispartof>Research in number theory, 2021-06, Vol.7 (2), Article 25</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</cites><orcidid>0000-0002-8506-3961 ; 0000-0001-8470-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Van Gorder, Robert A.</creatorcontrib><title>On the sum of positive divisors functions</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</description><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Singularity (mathematics)</subject><subject>Systems analysis</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsBVy6iNzePaZZSfEGhG12HTCbRKXZSk5mC_97UEdy5umdxvnPhI-SSwQ0DqG-zAK05BWQUAAVQdUJmyBWnWkp5WrJEpMAUnJNFzluAkrlAxBm53vTV8O6rPO6qGKp9zN3QHXzVdocux5SrMPZu6GKfL8hZsB_ZL37vnLw-3L-snuh68_i8ultTx5kYaBNqHixHK1CCtgqdD8w7jQ3jHJeNa0WQ0itW2wCtlrUFH7Rt3FI5WWvP5-Rq2t2n-Dn6PJhtHFNfXpqyyDWrQavSwqnlUsw5-WD2qdvZ9GUYmKMVM1kxxYr5sWKOEJ-gXMr9m09_0_9Q39CHY6o</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Erban, Radek</creator><creator>Van Gorder, Robert A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8506-3961</orcidid><orcidid>https://orcid.org/0000-0001-8470-3763</orcidid></search><sort><creationdate>20210601</creationdate><title>On the sum of positive divisors functions</title><author>Erban, Radek ; Van Gorder, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Singularity (mathematics)</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erban, Radek</creatorcontrib><creatorcontrib>Van Gorder, Robert A.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erban, Radek</au><au>Van Gorder, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the sum of positive divisors functions</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><artnum>25</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Properties of divisor functions σ k ( n ) , defined as sums of k -th powers of all divisors of n , are studied through the analysis of Ramanujan’s differential equations. This system of three differential equations is singular at x = 0 . Solution techniques suitable to tackle this singularity are developed and the problem is transformed into an analysis of a dynamical system. Number theoretical consequences of the presented dynamical system analysis are then discussed, including recursive formulas for divisor functions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-021-00240-6</doi><orcidid>https://orcid.org/0000-0002-8506-3961</orcidid><orcidid>https://orcid.org/0000-0001-8470-3763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2021-06, Vol.7 (2), Article 25
issn 2522-0160
2363-9555
language eng
recordid cdi_proquest_journals_2503917096
source Springer Link
subjects Differential equations
Dynamical systems
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Number Theory
Singularity (mathematics)
Systems analysis
title On the sum of positive divisors functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20sum%20of%20positive%20divisors%20functions&rft.jtitle=Research%20in%20number%20theory&rft.au=Erban,%20Radek&rft.date=2021-06-01&rft.volume=7&rft.issue=2&rft.artnum=25&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-021-00240-6&rft_dat=%3Cproquest_cross%3E2503917096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-bf73fa32a42509a62cef1ec92b13328bcd4f55e617af0d957a0ef9abc86c579e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503917096&rft_id=info:pmid/&rfr_iscdi=true