Loading…
The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries
Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6840 |
container_issue | 11 |
container_start_page | 6831 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Zhou, Fangling Peng Yu‡ Sun, Fanfei Zhang, Guangying Liu, Xu Wang, Lei |
description | Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst. |
doi_str_mv | 10.1039/d1ta00039j |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2503921262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503921262</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWLQbv-CB69EkM8lkllKsCgU3XbkpmeSlTRmTmqSoO8FP8A_9Egcrru5ZXM6FS8gFo1eM1t21ZUVTOtL2iEw4FbRqm04e_7NSp2Sa83bsUEWp7LoJ-VxuEEyMO0y6-BggOphjPYOgQ9zpVLwZMMOrLxvwOQ66oIXsw3pA8Gns6xKfM5QIfYy5QBl18e19jQES2r35dSbUB3AxwVP4_vjSPkGvS8HkMZ-TE6eHjNO_PCPL-e1ydl8tHu8eZjeLas05LZU0Soq-xQZdZyk1jZStU62SyjlhhdSGOcZty0XvBLPWCC3QCt50glON9Rm5PGh3Kb7sMZfVNu5TGBdXXIyvccYlr38A6BtlYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503921262</pqid></control><display><type>article</type><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><source>Royal Society of Chemistry</source><creator>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</creator><creatorcontrib>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</creatorcontrib><description>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta00039j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Catalysts ; Cementite ; Chemical reduction ; Circuits ; Introduced species ; Iron ; Iron carbides ; Maximum power density ; Metal air batteries ; Nanoparticles ; Oxygen ; Oxygen reduction reactions ; Platinum ; Pyrolysis ; Specific capacity ; Synergistic effect ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhou, Fangling</creatorcontrib><creatorcontrib>Peng Yu‡</creatorcontrib><creatorcontrib>Sun, Fanfei</creatorcontrib><creatorcontrib>Zhang, Guangying</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</description><subject>Batteries</subject><subject>Catalysts</subject><subject>Cementite</subject><subject>Chemical reduction</subject><subject>Circuits</subject><subject>Introduced species</subject><subject>Iron</subject><subject>Iron carbides</subject><subject>Maximum power density</subject><subject>Metal air batteries</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Pyrolysis</subject><subject>Specific capacity</subject><subject>Synergistic effect</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWLQbv-CB69EkM8lkllKsCgU3XbkpmeSlTRmTmqSoO8FP8A_9Egcrru5ZXM6FS8gFo1eM1t21ZUVTOtL2iEw4FbRqm04e_7NSp2Sa83bsUEWp7LoJ-VxuEEyMO0y6-BggOphjPYOgQ9zpVLwZMMOrLxvwOQ66oIXsw3pA8Gns6xKfM5QIfYy5QBl18e19jQES2r35dSbUB3AxwVP4_vjSPkGvS8HkMZ-TE6eHjNO_PCPL-e1ydl8tHu8eZjeLas05LZU0Soq-xQZdZyk1jZStU62SyjlhhdSGOcZty0XvBLPWCC3QCt50glON9Rm5PGh3Kb7sMZfVNu5TGBdXXIyvccYlr38A6BtlYA</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Zhou, Fangling</creator><creator>Peng Yu‡</creator><creator>Sun, Fanfei</creator><creator>Zhang, Guangying</creator><creator>Liu, Xu</creator><creator>Wang, Lei</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210321</creationdate><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><author>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Catalysts</topic><topic>Cementite</topic><topic>Chemical reduction</topic><topic>Circuits</topic><topic>Introduced species</topic><topic>Iron</topic><topic>Iron carbides</topic><topic>Maximum power density</topic><topic>Metal air batteries</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Pyrolysis</topic><topic>Specific capacity</topic><topic>Synergistic effect</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Fangling</creatorcontrib><creatorcontrib>Peng Yu‡</creatorcontrib><creatorcontrib>Sun, Fanfei</creatorcontrib><creatorcontrib>Zhang, Guangying</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Fangling</au><au>Peng Yu‡</au><au>Sun, Fanfei</au><au>Zhang, Guangying</au><au>Liu, Xu</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-03-21</date><risdate>2021</risdate><volume>9</volume><issue>11</issue><spage>6831</spage><epage>6840</epage><pages>6831-6840</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta00039j</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2503921262 |
source | Royal Society of Chemistry |
subjects | Batteries Catalysts Cementite Chemical reduction Circuits Introduced species Iron Iron carbides Maximum power density Metal air batteries Nanoparticles Oxygen Oxygen reduction reactions Platinum Pyrolysis Specific capacity Synergistic effect Zinc Zinc-oxygen batteries |
title | The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cooperation%20of%20Fe3C%20nanoparticles%20with%20isolated%20single%20iron%20atoms%20to%20boost%20the%20oxygen%20reduction%20reaction%20for%20Zn%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhou,%20Fangling&rft.date=2021-03-21&rft.volume=9&rft.issue=11&rft.spage=6831&rft.epage=6840&rft.pages=6831-6840&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta00039j&rft_dat=%3Cproquest%3E2503921262%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503921262&rft_id=info:pmid/&rfr_iscdi=true |