Loading…

The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries

Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840
Main Authors: Zhou, Fangling, Peng Yu‡, Sun, Fanfei, Zhang, Guangying, Liu, Xu, Wang, Lei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6840
container_issue 11
container_start_page 6831
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Zhou, Fangling
Peng Yu‡
Sun, Fanfei
Zhang, Guangying
Liu, Xu
Wang, Lei
description Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.
doi_str_mv 10.1039/d1ta00039j
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2503921262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503921262</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWLQbv-CB69EkM8lkllKsCgU3XbkpmeSlTRmTmqSoO8FP8A_9Egcrru5ZXM6FS8gFo1eM1t21ZUVTOtL2iEw4FbRqm04e_7NSp2Sa83bsUEWp7LoJ-VxuEEyMO0y6-BggOphjPYOgQ9zpVLwZMMOrLxvwOQ66oIXsw3pA8Gns6xKfM5QIfYy5QBl18e19jQES2r35dSbUB3AxwVP4_vjSPkGvS8HkMZ-TE6eHjNO_PCPL-e1ydl8tHu8eZjeLas05LZU0Soq-xQZdZyk1jZStU62SyjlhhdSGOcZty0XvBLPWCC3QCt50glON9Rm5PGh3Kb7sMZfVNu5TGBdXXIyvccYlr38A6BtlYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503921262</pqid></control><display><type>article</type><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><source>Royal Society of Chemistry</source><creator>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</creator><creatorcontrib>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</creatorcontrib><description>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta00039j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Catalysts ; Cementite ; Chemical reduction ; Circuits ; Introduced species ; Iron ; Iron carbides ; Maximum power density ; Metal air batteries ; Nanoparticles ; Oxygen ; Oxygen reduction reactions ; Platinum ; Pyrolysis ; Specific capacity ; Synergistic effect ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhou, Fangling</creatorcontrib><creatorcontrib>Peng Yu‡</creatorcontrib><creatorcontrib>Sun, Fanfei</creatorcontrib><creatorcontrib>Zhang, Guangying</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</description><subject>Batteries</subject><subject>Catalysts</subject><subject>Cementite</subject><subject>Chemical reduction</subject><subject>Circuits</subject><subject>Introduced species</subject><subject>Iron</subject><subject>Iron carbides</subject><subject>Maximum power density</subject><subject>Metal air batteries</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Pyrolysis</subject><subject>Specific capacity</subject><subject>Synergistic effect</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWLQbv-CB69EkM8lkllKsCgU3XbkpmeSlTRmTmqSoO8FP8A_9Egcrru5ZXM6FS8gFo1eM1t21ZUVTOtL2iEw4FbRqm04e_7NSp2Sa83bsUEWp7LoJ-VxuEEyMO0y6-BggOphjPYOgQ9zpVLwZMMOrLxvwOQ66oIXsw3pA8Gns6xKfM5QIfYy5QBl18e19jQES2r35dSbUB3AxwVP4_vjSPkGvS8HkMZ-TE6eHjNO_PCPL-e1ydl8tHu8eZjeLas05LZU0Soq-xQZdZyk1jZStU62SyjlhhdSGOcZty0XvBLPWCC3QCt50glON9Rm5PGh3Kb7sMZfVNu5TGBdXXIyvccYlr38A6BtlYA</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Zhou, Fangling</creator><creator>Peng Yu‡</creator><creator>Sun, Fanfei</creator><creator>Zhang, Guangying</creator><creator>Liu, Xu</creator><creator>Wang, Lei</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210321</creationdate><title>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</title><author>Zhou, Fangling ; Peng Yu‡ ; Sun, Fanfei ; Zhang, Guangying ; Liu, Xu ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Catalysts</topic><topic>Cementite</topic><topic>Chemical reduction</topic><topic>Circuits</topic><topic>Introduced species</topic><topic>Iron</topic><topic>Iron carbides</topic><topic>Maximum power density</topic><topic>Metal air batteries</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Pyrolysis</topic><topic>Specific capacity</topic><topic>Synergistic effect</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Fangling</creatorcontrib><creatorcontrib>Peng Yu‡</creatorcontrib><creatorcontrib>Sun, Fanfei</creatorcontrib><creatorcontrib>Zhang, Guangying</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Fangling</au><au>Peng Yu‡</au><au>Sun, Fanfei</au><au>Zhang, Guangying</au><au>Liu, Xu</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-03-21</date><risdate>2021</risdate><volume>9</volume><issue>11</issue><spage>6831</spage><epage>6840</epage><pages>6831-6840</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Fe–N–C exhibits excellent electrocatalytic oxygen reduction reaction (ORR) activity, but the synergistic effect between metallic and isolated iron species remains unclear. Herein, N-doped carbon nanostructure encapsulated Fe3C nanoparticles coupled with atomically dispersed Fe–N4 (Fe3C–FeN/NC) were synthesized by a general pyrolytic strategy. The introduction of Zn species promoted the formation of Fe–N4 during pyrolysis. Theoretical calculations indicated that the oxygen adsorption capacity of Fe3C was further enhanced by Fe–N4, which facilitated the breakage of O–O bonds. As a result, its onset potential of 0.95 V surpassed that of Fe3C/NC (0.89 V) and NC (0.85 V) in 0.1 M KOH electrolyte. Only a 7 mV negative shift was obtained after 5000 cycles, which outperformed Pt/C catalysts. The assembled primary Zn–air battery (ZAB) displayed a high open-circuit potential of 1.41 V and a maximum power density of 166 mW cm−2 with an excellent specific capacity of 745 mA h g−1, outperforming the battery assembled with a commercial Pt/C catalyst.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta00039j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (11), p.6831-6840
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2503921262
source Royal Society of Chemistry
subjects Batteries
Catalysts
Cementite
Chemical reduction
Circuits
Introduced species
Iron
Iron carbides
Maximum power density
Metal air batteries
Nanoparticles
Oxygen
Oxygen reduction reactions
Platinum
Pyrolysis
Specific capacity
Synergistic effect
Zinc
Zinc-oxygen batteries
title The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cooperation%20of%20Fe3C%20nanoparticles%20with%20isolated%20single%20iron%20atoms%20to%20boost%20the%20oxygen%20reduction%20reaction%20for%20Zn%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhou,%20Fangling&rft.date=2021-03-21&rft.volume=9&rft.issue=11&rft.spage=6831&rft.epage=6840&rft.pages=6831-6840&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta00039j&rft_dat=%3Cproquest%3E2503921262%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g220t-6c865b7e4ef9d00c4667f87868ff5d56ac1f12d725bf51ddc5a5ed5249520ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503921262&rft_id=info:pmid/&rfr_iscdi=true