Loading…

Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism

•Revealed dominant core-shell mechanism for grain boundary diffusion processed permanent magnet.•A structure-chemistry-magnetic-property analysis of Nd-Fe-B magnet used for electric vehicles and wind turbines.•Gaining high efficiency of Nd-Fe-B via grain boundary engineering.•Importance of high coer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2021-05, Vol.864, p.158915, Article 158915
Main Authors: Soderžnik, Kristina Žagar, Rožman, Kristina Žužek, Komelj, Matej, Kovács, András, Diehle, Patrick, Denneulin, Thibaud, Savenko, Aleksei, Soderžnik, Marko, Kobe, Spomenka, Dunin-Borkowski, Rafal E., Mayer, Joachim, Markoli, Boštjan, Šturm, Sašo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63
cites cdi_FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63
container_end_page
container_issue
container_start_page 158915
container_title Journal of alloys and compounds
container_volume 864
creator Soderžnik, Kristina Žagar
Rožman, Kristina Žužek
Komelj, Matej
Kovács, András
Diehle, Patrick
Denneulin, Thibaud
Savenko, Aleksei
Soderžnik, Marko
Kobe, Spomenka
Dunin-Borkowski, Rafal E.
Mayer, Joachim
Markoli, Boštjan
Šturm, Sašo
description •Revealed dominant core-shell mechanism for grain boundary diffusion processed permanent magnet.•A structure-chemistry-magnetic-property analysis of Nd-Fe-B magnet used for electric vehicles and wind turbines.•Gaining high efficiency of Nd-Fe-B via grain boundary engineering.•Importance of high coercivity permanent magnets for production of electric components on a macro and nanoscale. We propose a dominant core-shell formation mechanism for grain-boundary-diffusion-processed (GBDP), Tb-treated, Nd2Fe14B sintered magnets. A depth-sensitive analysis of Tb-treated samples, relative to a non-GBDP Nd2Fe14B magnet, showed a 30% increase of the coercivity in the central part of the magnet. A structure-chemistry-magnetic-property analysis revealed the dominant GBDP mechanism. On the surface of the Tb-treated magnet, the Tb is released from the starting precursor following a cascade of chemical reactions between the Tb oxide and the Nd and/or the Nd-Fe-B. The released Tb diffuses along the grain boundaries, forming a core-shell structure. The calculated optimum concentration for a 30% increase in the coercivity was 50 ppm of Tb. Off-axis electron-holography measurements were used to quantitatively map the characteristic magnetic states of the samples, confirming a different magnetic domain structure in the shell than in the core. The magnetic induction in the core was found to be 26% higher than that of the shell, which has a lower magnetic saturation due to the presence of Tb. The results show that the measured increase in the coercivity is due to a structural effect, and not the magnetic contribution of the Tb. Our results pave the way towards grain-boundary-engineering studies that can be used to increase the coercivity of Nd-Fe-B magnets for e-mobility and eco-power applications.
doi_str_mv 10.1016/j.jallcom.2021.158915
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821003224</els_id><sourcerecordid>2504813237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63</originalsourceid><addsrcrecordid>eNqFUctOHDEQtBBILJBPiGQpZy9-7Mx4ThEgIJFIciFny4-eXY9mbLA9SPtPfGS82r3n1K1WdZWqCqGvjK4ZZe3tuB71NNk4rznlbM0a2bPmDK2Y7ATZtG1_jla05w2RQspLdJXzSCllvWAr9PnL2xRzSYstS9IT9iH77a7kupSIyw6wjZCs__BljyHsdLAwQyg4DnibtA_ExCU4nfbE-WFYso-BvKVoIWdw-NWQkkCXuv525AnIPc6VGVI9zHoboCoZ2MfgTloJSN7BNOEhplmXyoZnsFXW5_kGXQx6yvDlNK_R36fH14cf5OXP88-HuxdihdwUwkTXSKedBAO276XknHUttGbTA6NcgjS2E9wI5rR0reHgNGPA6aBt15hWXKNvR97q432BXNQYlxSqpOIN3UgmuOgqqjmiDgHmBIN6S36uQShG1aEYNapTMepQjDoWU_--H_-gWvjwkFS2HmqsziewRbno_8PwD6hanpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813237</pqid></control><display><type>article</type><title>Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Soderžnik, Kristina Žagar ; Rožman, Kristina Žužek ; Komelj, Matej ; Kovács, András ; Diehle, Patrick ; Denneulin, Thibaud ; Savenko, Aleksei ; Soderžnik, Marko ; Kobe, Spomenka ; Dunin-Borkowski, Rafal E. ; Mayer, Joachim ; Markoli, Boštjan ; Šturm, Sašo</creator><creatorcontrib>Soderžnik, Kristina Žagar ; Rožman, Kristina Žužek ; Komelj, Matej ; Kovács, András ; Diehle, Patrick ; Denneulin, Thibaud ; Savenko, Aleksei ; Soderžnik, Marko ; Kobe, Spomenka ; Dunin-Borkowski, Rafal E. ; Mayer, Joachim ; Markoli, Boštjan ; Šturm, Sašo</creatorcontrib><description>•Revealed dominant core-shell mechanism for grain boundary diffusion processed permanent magnet.•A structure-chemistry-magnetic-property analysis of Nd-Fe-B magnet used for electric vehicles and wind turbines.•Gaining high efficiency of Nd-Fe-B via grain boundary engineering.•Importance of high coercivity permanent magnets for production of electric components on a macro and nanoscale. We propose a dominant core-shell formation mechanism for grain-boundary-diffusion-processed (GBDP), Tb-treated, Nd2Fe14B sintered magnets. A depth-sensitive analysis of Tb-treated samples, relative to a non-GBDP Nd2Fe14B magnet, showed a 30% increase of the coercivity in the central part of the magnet. A structure-chemistry-magnetic-property analysis revealed the dominant GBDP mechanism. On the surface of the Tb-treated magnet, the Tb is released from the starting precursor following a cascade of chemical reactions between the Tb oxide and the Nd and/or the Nd-Fe-B. The released Tb diffuses along the grain boundaries, forming a core-shell structure. The calculated optimum concentration for a 30% increase in the coercivity was 50 ppm of Tb. Off-axis electron-holography measurements were used to quantitatively map the characteristic magnetic states of the samples, confirming a different magnetic domain structure in the shell than in the core. The magnetic induction in the core was found to be 26% higher than that of the shell, which has a lower magnetic saturation due to the presence of Tb. The results show that the measured increase in the coercivity is due to a structural effect, and not the magnetic contribution of the Tb. Our results pave the way towards grain-boundary-engineering studies that can be used to increase the coercivity of Nd-Fe-B magnets for e-mobility and eco-power applications.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.158915</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Atom-probe tomography ; Cascade chemical reactions ; Coercivity ; Core-shell structure ; Electron energy-loss spectroscopy ; Ferrous alloys ; Grain boundaries ; Grain-boundary diffusion ; Magnetic domains ; Magnetic induction ; Magnetic materials ; Magnetic properties ; Magnetic saturation ; Magnetism, Nd-Fe-B ; Neodymium ; Off-axis electron holography ; Permanent magnets ; Sintering ; Transmission electron microscopy</subject><ispartof>Journal of alloys and compounds, 2021-05, Vol.864, p.158915, Article 158915</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV May 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63</citedby><cites>FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63</cites><orcidid>0000-0001-8485-991X ; 0000-0003-0608-9889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soderžnik, Kristina Žagar</creatorcontrib><creatorcontrib>Rožman, Kristina Žužek</creatorcontrib><creatorcontrib>Komelj, Matej</creatorcontrib><creatorcontrib>Kovács, András</creatorcontrib><creatorcontrib>Diehle, Patrick</creatorcontrib><creatorcontrib>Denneulin, Thibaud</creatorcontrib><creatorcontrib>Savenko, Aleksei</creatorcontrib><creatorcontrib>Soderžnik, Marko</creatorcontrib><creatorcontrib>Kobe, Spomenka</creatorcontrib><creatorcontrib>Dunin-Borkowski, Rafal E.</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Šturm, Sašo</creatorcontrib><title>Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism</title><title>Journal of alloys and compounds</title><description>•Revealed dominant core-shell mechanism for grain boundary diffusion processed permanent magnet.•A structure-chemistry-magnetic-property analysis of Nd-Fe-B magnet used for electric vehicles and wind turbines.•Gaining high efficiency of Nd-Fe-B via grain boundary engineering.•Importance of high coercivity permanent magnets for production of electric components on a macro and nanoscale. We propose a dominant core-shell formation mechanism for grain-boundary-diffusion-processed (GBDP), Tb-treated, Nd2Fe14B sintered magnets. A depth-sensitive analysis of Tb-treated samples, relative to a non-GBDP Nd2Fe14B magnet, showed a 30% increase of the coercivity in the central part of the magnet. A structure-chemistry-magnetic-property analysis revealed the dominant GBDP mechanism. On the surface of the Tb-treated magnet, the Tb is released from the starting precursor following a cascade of chemical reactions between the Tb oxide and the Nd and/or the Nd-Fe-B. The released Tb diffuses along the grain boundaries, forming a core-shell structure. The calculated optimum concentration for a 30% increase in the coercivity was 50 ppm of Tb. Off-axis electron-holography measurements were used to quantitatively map the characteristic magnetic states of the samples, confirming a different magnetic domain structure in the shell than in the core. The magnetic induction in the core was found to be 26% higher than that of the shell, which has a lower magnetic saturation due to the presence of Tb. The results show that the measured increase in the coercivity is due to a structural effect, and not the magnetic contribution of the Tb. Our results pave the way towards grain-boundary-engineering studies that can be used to increase the coercivity of Nd-Fe-B magnets for e-mobility and eco-power applications.</description><subject>Atom-probe tomography</subject><subject>Cascade chemical reactions</subject><subject>Coercivity</subject><subject>Core-shell structure</subject><subject>Electron energy-loss spectroscopy</subject><subject>Ferrous alloys</subject><subject>Grain boundaries</subject><subject>Grain-boundary diffusion</subject><subject>Magnetic domains</subject><subject>Magnetic induction</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism, Nd-Fe-B</subject><subject>Neodymium</subject><subject>Off-axis electron holography</subject><subject>Permanent magnets</subject><subject>Sintering</subject><subject>Transmission electron microscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUctOHDEQtBBILJBPiGQpZy9-7Mx4ThEgIJFIciFny4-eXY9mbLA9SPtPfGS82r3n1K1WdZWqCqGvjK4ZZe3tuB71NNk4rznlbM0a2bPmDK2Y7ATZtG1_jla05w2RQspLdJXzSCllvWAr9PnL2xRzSYstS9IT9iH77a7kupSIyw6wjZCs__BljyHsdLAwQyg4DnibtA_ExCU4nfbE-WFYso-BvKVoIWdw-NWQkkCXuv525AnIPc6VGVI9zHoboCoZ2MfgTloJSN7BNOEhplmXyoZnsFXW5_kGXQx6yvDlNK_R36fH14cf5OXP88-HuxdihdwUwkTXSKedBAO276XknHUttGbTA6NcgjS2E9wI5rR0reHgNGPA6aBt15hWXKNvR97q432BXNQYlxSqpOIN3UgmuOgqqjmiDgHmBIN6S36uQShG1aEYNapTMepQjDoWU_--H_-gWvjwkFS2HmqsziewRbno_8PwD6hanpQ</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Soderžnik, Kristina Žagar</creator><creator>Rožman, Kristina Žužek</creator><creator>Komelj, Matej</creator><creator>Kovács, András</creator><creator>Diehle, Patrick</creator><creator>Denneulin, Thibaud</creator><creator>Savenko, Aleksei</creator><creator>Soderžnik, Marko</creator><creator>Kobe, Spomenka</creator><creator>Dunin-Borkowski, Rafal E.</creator><creator>Mayer, Joachim</creator><creator>Markoli, Boštjan</creator><creator>Šturm, Sašo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8485-991X</orcidid><orcidid>https://orcid.org/0000-0003-0608-9889</orcidid></search><sort><creationdate>20210525</creationdate><title>Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism</title><author>Soderžnik, Kristina Žagar ; Rožman, Kristina Žužek ; Komelj, Matej ; Kovács, András ; Diehle, Patrick ; Denneulin, Thibaud ; Savenko, Aleksei ; Soderžnik, Marko ; Kobe, Spomenka ; Dunin-Borkowski, Rafal E. ; Mayer, Joachim ; Markoli, Boštjan ; Šturm, Sašo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atom-probe tomography</topic><topic>Cascade chemical reactions</topic><topic>Coercivity</topic><topic>Core-shell structure</topic><topic>Electron energy-loss spectroscopy</topic><topic>Ferrous alloys</topic><topic>Grain boundaries</topic><topic>Grain-boundary diffusion</topic><topic>Magnetic domains</topic><topic>Magnetic induction</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism, Nd-Fe-B</topic><topic>Neodymium</topic><topic>Off-axis electron holography</topic><topic>Permanent magnets</topic><topic>Sintering</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soderžnik, Kristina Žagar</creatorcontrib><creatorcontrib>Rožman, Kristina Žužek</creatorcontrib><creatorcontrib>Komelj, Matej</creatorcontrib><creatorcontrib>Kovács, András</creatorcontrib><creatorcontrib>Diehle, Patrick</creatorcontrib><creatorcontrib>Denneulin, Thibaud</creatorcontrib><creatorcontrib>Savenko, Aleksei</creatorcontrib><creatorcontrib>Soderžnik, Marko</creatorcontrib><creatorcontrib>Kobe, Spomenka</creatorcontrib><creatorcontrib>Dunin-Borkowski, Rafal E.</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Markoli, Boštjan</creatorcontrib><creatorcontrib>Šturm, Sašo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soderžnik, Kristina Žagar</au><au>Rožman, Kristina Žužek</au><au>Komelj, Matej</au><au>Kovács, András</au><au>Diehle, Patrick</au><au>Denneulin, Thibaud</au><au>Savenko, Aleksei</au><au>Soderžnik, Marko</au><au>Kobe, Spomenka</au><au>Dunin-Borkowski, Rafal E.</au><au>Mayer, Joachim</au><au>Markoli, Boštjan</au><au>Šturm, Sašo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>864</volume><spage>158915</spage><pages>158915-</pages><artnum>158915</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Revealed dominant core-shell mechanism for grain boundary diffusion processed permanent magnet.•A structure-chemistry-magnetic-property analysis of Nd-Fe-B magnet used for electric vehicles and wind turbines.•Gaining high efficiency of Nd-Fe-B via grain boundary engineering.•Importance of high coercivity permanent magnets for production of electric components on a macro and nanoscale. We propose a dominant core-shell formation mechanism for grain-boundary-diffusion-processed (GBDP), Tb-treated, Nd2Fe14B sintered magnets. A depth-sensitive analysis of Tb-treated samples, relative to a non-GBDP Nd2Fe14B magnet, showed a 30% increase of the coercivity in the central part of the magnet. A structure-chemistry-magnetic-property analysis revealed the dominant GBDP mechanism. On the surface of the Tb-treated magnet, the Tb is released from the starting precursor following a cascade of chemical reactions between the Tb oxide and the Nd and/or the Nd-Fe-B. The released Tb diffuses along the grain boundaries, forming a core-shell structure. The calculated optimum concentration for a 30% increase in the coercivity was 50 ppm of Tb. Off-axis electron-holography measurements were used to quantitatively map the characteristic magnetic states of the samples, confirming a different magnetic domain structure in the shell than in the core. The magnetic induction in the core was found to be 26% higher than that of the shell, which has a lower magnetic saturation due to the presence of Tb. The results show that the measured increase in the coercivity is due to a structural effect, and not the magnetic contribution of the Tb. Our results pave the way towards grain-boundary-engineering studies that can be used to increase the coercivity of Nd-Fe-B magnets for e-mobility and eco-power applications.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.158915</doi><orcidid>https://orcid.org/0000-0001-8485-991X</orcidid><orcidid>https://orcid.org/0000-0003-0608-9889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-05, Vol.864, p.158915, Article 158915
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2504813237
source ScienceDirect Freedom Collection 2022-2024
subjects Atom-probe tomography
Cascade chemical reactions
Coercivity
Core-shell structure
Electron energy-loss spectroscopy
Ferrous alloys
Grain boundaries
Grain-boundary diffusion
Magnetic domains
Magnetic induction
Magnetic materials
Magnetic properties
Magnetic saturation
Magnetism, Nd-Fe-B
Neodymium
Off-axis electron holography
Permanent magnets
Sintering
Transmission electron microscopy
title Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd-Fe-B sintered magnets beyond the core-shell formation mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20insights%20into%20the%20coercivity%20enhancement%20of%20grain-boundary-diffusion-processed%20Tb-treated%20Nd-Fe-B%20sintered%20magnets%20beyond%20the%20core-shell%20formation%20mechanism&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Soder%C5%BEnik,%20Kristina%20%C5%BDagar&rft.date=2021-05-25&rft.volume=864&rft.spage=158915&rft.pages=158915-&rft.artnum=158915&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.158915&rft_dat=%3Cproquest_cross%3E2504813237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-13758dad8ebec998822176e6b49e1028e8bc732b31da8d6b2eda11e20fac75b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2504813237&rft_id=info:pmid/&rfr_iscdi=true