Loading…
Speckle Interferometric Investigation of Argon Pressure-Induced Surface Roughness Modifications in RF-Sputtered MoO3 Film
Film quality analysis is of more considerable significance due to its diversified applications in various fields of technology. The present work reports the speckle interferometric analysis of the argon pressure-induced surface roughness modifications of RF sputtered MoO 3 films. The paper suggests...
Saved in:
Published in: | Journal of nondestructive evaluation 2021-03, Vol.40 (1), Article 10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Film quality analysis is of more considerable significance due to its diversified applications in various fields of technology. The present work reports the speckle interferometric analysis of the argon pressure-induced surface roughness modifications of RF sputtered MoO
3
films. The paper suggests a new method of surface quality analysis of thin films through a parameter δ, which is the difference between the initial and final inertia moment values in the study of the thermal-induced dynamic speckle pattern. The limitations of root mean square surface roughness analysis of the atomic force microscopic image of the films is also exemplified. The research suggests that argon pressure plays a vital role in the surface property of RF sputtered films and also that the dynamic speckle analysis can give precise information about the quality of films. The contour plot of particle displacement vector under thermal stress, suggests the degree of uniformity in the distribution of particles in the film. |
---|---|
ISSN: | 0195-9298 1573-4862 |
DOI: | 10.1007/s10921-020-00741-x |