Loading…
Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2
The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thick...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.7377-7390 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113 |
container_end_page | 7390 |
container_issue | 6 |
container_start_page | 7377 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Rammah, Y. S. Olarinoye, I. O. El-Agawany, F. I. Akkurt, Iskender Yousef, E. |
description | The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B
2
O
3
–30Li
2
O–5Al
2
O
3
–
x
TiO
2
:
x
= 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass (
µ
m
) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of
µ
m
at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm
2
/g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV,
µ
m
values vary according to the order (G1)
µm
(G1)
LAC
. The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1)
MFP
> (G2)
MFP
> (G3)
MFP
> (G4)
MFP
> (G5)
MFP
> (G6)
MFP
> (G7)
MFP
. The HVT of the glasses follow the order: (G1)
HVT
> (G2)
HVT
> (G3)
HVT
> (G4)
HVT
> (G5)
HVT
> (G6)
HVT
> (G7)
HVT
. EABUF and EBUF increase in the order (G1)
(EABUF, EBUF)
> (G2)
(EABUF, EBUF)
> (G3)
(EABUF, EBUF)
> (G4)
(EABUF, EBUF)
> (G5)
(EABUF, EBUF)
> (G6)
(EABUF, EBUF)
> (G7)
(EABUF, EBUF)
. The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields. |
doi_str_mv | 10.1007/s10854-021-05447-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdTS_k4y7WvyDwrio4C5kMkmdUpOapIvZ-Q6-oU_i1BHcuTr3Xs45Fz4AzjG6xAiJq4SR5AwigiHijAnYH4AJ5oJCJsnLIZigigvIOCHH4CSlNUKoZFROwOrpNeTgC-3bwttdjvu5SSE2nV8VRm-16XJfBFfkLmuvs4XRdt6FaGxbNCEOl2K10SnZdF3ckJp-fXwuOlIPMtuM67KrySk4cnqT7NmvTsHz3e1y_gAX9f3jfLaAhuIqw7bV1tpSc8FIw0rjuMSilaw1xpFSUqIZalyLOS8trVxVVqISuJEYN9gQjOkUXIy92xjedzZltQ676IeXinDEkaxkWQ4uMrpMDClF69Q2dm869gojtQeqRqBqAKp-gKp-CNExlAazX9n4V_1P6hvO9nu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089866</pqid></control><display><type>article</type><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><source>Springer Link</source><creator>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</creator><creatorcontrib>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</creatorcontrib><description><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B
2
O
3
–30Li
2
O–5Al
2
O
3
–
x
TiO
2
:
x
= 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass (
µ
m
) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of
µ
m
at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm
2
/g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV,
µ
m
values vary according to the order (G1)
µm
< (G2)
µm
< (G3)
µm
< (G4)
µm
< (G5)
µm
< (G6)
µm
< (G7)
µm
. Values of LAC followed the order: (G7)
LAC
> (G6)
LAC
> (G5)
LAC
> (G4)
LAC
> (G3)
LAC
> (G2)
LAC
> (G1)
LAC
. The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1)
MFP
> (G2)
MFP
> (G3)
MFP
> (G4)
MFP
> (G5)
MFP
> (G6)
MFP
> (G7)
MFP
. The HVT of the glasses follow the order: (G1)
HVT
> (G2)
HVT
> (G3)
HVT
> (G4)
HVT
> (G5)
HVT
> (G6)
HVT
> (G7)
HVT
. EABUF and EBUF increase in the order (G1)
(EABUF, EBUF)
> (G2)
(EABUF, EBUF)
> (G3)
(EABUF, EBUF)
> (G4)
(EABUF, EBUF)
> (G5)
(EABUF, EBUF)
> (G6)
(EABUF, EBUF)
> (G7)
(EABUF, EBUF)
. The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05447-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Attenuation coefficients ; Boron oxides ; Characterization and Evaluation of Materials ; Charged particles ; Chemistry and Materials Science ; Fast neutrons ; Ionizing radiation ; Lithium oxides ; Materials Science ; Neutron absorbers ; Optical and Electronic Materials ; Photons ; Radiation ; Radiation shielding ; Science ; Titanium dioxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7377-7390</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</citedby><cites>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</cites><orcidid>0000-0003-3106-5571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rammah, Y. S.</creatorcontrib><creatorcontrib>Olarinoye, I. O.</creatorcontrib><creatorcontrib>El-Agawany, F. I.</creatorcontrib><creatorcontrib>Akkurt, Iskender</creatorcontrib><creatorcontrib>Yousef, E.</creatorcontrib><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B
2
O
3
–30Li
2
O–5Al
2
O
3
–
x
TiO
2
:
x
= 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass (
µ
m
) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of
µ
m
at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm
2
/g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV,
µ
m
values vary according to the order (G1)
µm
< (G2)
µm
< (G3)
µm
< (G4)
µm
< (G5)
µm
< (G6)
µm
< (G7)
µm
. Values of LAC followed the order: (G7)
LAC
> (G6)
LAC
> (G5)
LAC
> (G4)
LAC
> (G3)
LAC
> (G2)
LAC
> (G1)
LAC
. The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1)
MFP
> (G2)
MFP
> (G3)
MFP
> (G4)
MFP
> (G5)
MFP
> (G6)
MFP
> (G7)
MFP
. The HVT of the glasses follow the order: (G1)
HVT
> (G2)
HVT
> (G3)
HVT
> (G4)
HVT
> (G5)
HVT
> (G6)
HVT
> (G7)
HVT
. EABUF and EBUF increase in the order (G1)
(EABUF, EBUF)
> (G2)
(EABUF, EBUF)
> (G3)
(EABUF, EBUF)
> (G4)
(EABUF, EBUF)
> (G5)
(EABUF, EBUF)
> (G6)
(EABUF, EBUF)
> (G7)
(EABUF, EBUF)
. The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></description><subject>Aluminum oxide</subject><subject>Attenuation coefficients</subject><subject>Boron oxides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charged particles</subject><subject>Chemistry and Materials Science</subject><subject>Fast neutrons</subject><subject>Ionizing radiation</subject><subject>Lithium oxides</subject><subject>Materials Science</subject><subject>Neutron absorbers</subject><subject>Optical and Electronic Materials</subject><subject>Photons</subject><subject>Radiation</subject><subject>Radiation shielding</subject><subject>Science</subject><subject>Titanium dioxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdTS_k4y7WvyDwrio4C5kMkmdUpOapIvZ-Q6-oU_i1BHcuTr3Xs45Fz4AzjG6xAiJq4SR5AwigiHijAnYH4AJ5oJCJsnLIZigigvIOCHH4CSlNUKoZFROwOrpNeTgC-3bwttdjvu5SSE2nV8VRm-16XJfBFfkLmuvs4XRdt6FaGxbNCEOl2K10SnZdF3ckJp-fXwuOlIPMtuM67KrySk4cnqT7NmvTsHz3e1y_gAX9f3jfLaAhuIqw7bV1tpSc8FIw0rjuMSilaw1xpFSUqIZalyLOS8trVxVVqISuJEYN9gQjOkUXIy92xjedzZltQ676IeXinDEkaxkWQ4uMrpMDClF69Q2dm869gojtQeqRqBqAKp-gKp-CNExlAazX9n4V_1P6hvO9nu8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Rammah, Y. S.</creator><creator>Olarinoye, I. O.</creator><creator>El-Agawany, F. I.</creator><creator>Akkurt, Iskender</creator><creator>Yousef, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3106-5571</orcidid></search><sort><creationdate>20210301</creationdate><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><author>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Attenuation coefficients</topic><topic>Boron oxides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charged particles</topic><topic>Chemistry and Materials Science</topic><topic>Fast neutrons</topic><topic>Ionizing radiation</topic><topic>Lithium oxides</topic><topic>Materials Science</topic><topic>Neutron absorbers</topic><topic>Optical and Electronic Materials</topic><topic>Photons</topic><topic>Radiation</topic><topic>Radiation shielding</topic><topic>Science</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rammah, Y. S.</creatorcontrib><creatorcontrib>Olarinoye, I. O.</creatorcontrib><creatorcontrib>El-Agawany, F. I.</creatorcontrib><creatorcontrib>Akkurt, Iskender</creatorcontrib><creatorcontrib>Yousef, E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rammah, Y. S.</au><au>Olarinoye, I. O.</au><au>El-Agawany, F. I.</au><au>Akkurt, Iskender</au><au>Yousef, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>7377</spage><epage>7390</epage><pages>7377-7390</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B
2
O
3
–30Li
2
O–5Al
2
O
3
–
x
TiO
2
:
x
= 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass (
µ
m
) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of
µ
m
at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm
2
/g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV,
µ
m
values vary according to the order (G1)
µm
< (G2)
µm
< (G3)
µm
< (G4)
µm
< (G5)
µm
< (G6)
µm
< (G7)
µm
. Values of LAC followed the order: (G7)
LAC
> (G6)
LAC
> (G5)
LAC
> (G4)
LAC
> (G3)
LAC
> (G2)
LAC
> (G1)
LAC
. The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1)
MFP
> (G2)
MFP
> (G3)
MFP
> (G4)
MFP
> (G5)
MFP
> (G6)
MFP
> (G7)
MFP
. The HVT of the glasses follow the order: (G1)
HVT
> (G2)
HVT
> (G3)
HVT
> (G4)
HVT
> (G5)
HVT
> (G6)
HVT
> (G7)
HVT
. EABUF and EBUF increase in the order (G1)
(EABUF, EBUF)
> (G2)
(EABUF, EBUF)
> (G3)
(EABUF, EBUF)
> (G4)
(EABUF, EBUF)
> (G5)
(EABUF, EBUF)
> (G6)
(EABUF, EBUF)
> (G7)
(EABUF, EBUF)
. The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05447-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3106-5571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7377-7390 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2505089866 |
source | Springer Link |
subjects | Aluminum oxide Attenuation coefficients Boron oxides Characterization and Evaluation of Materials Charged particles Chemistry and Materials Science Fast neutrons Ionizing radiation Lithium oxides Materials Science Neutron absorbers Optical and Electronic Materials Photons Radiation Radiation shielding Science Titanium dioxide |
title | Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon%20and%20neutron%20absorbing%20capacity%20of%20titanate-reinforced%20borate%20glasses:%20B2O3%E2%80%93Li2O%E2%80%93Al2O3%E2%80%93TiO2&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Rammah,%20Y.%20S.&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=7377&rft.epage=7390&rft.pages=7377-7390&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05447-y&rft_dat=%3Cproquest_cross%3E2505089866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505089866&rft_id=info:pmid/&rfr_iscdi=true |