Loading…

Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2

The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x  = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thick...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.7377-7390
Main Authors: Rammah, Y. S., Olarinoye, I. O., El-Agawany, F. I., Akkurt, Iskender, Yousef, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113
cites cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113
container_end_page 7390
container_issue 6
container_start_page 7377
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Rammah, Y. S.
Olarinoye, I. O.
El-Agawany, F. I.
Akkurt, Iskender
Yousef, E.
description The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x  = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of µ m at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm 2 /g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV, µ m values vary according to the order (G1) µm   (G1) LAC . The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1) MFP  > (G2) MFP  > (G3) MFP  > (G4) MFP  > (G5) MFP  > (G6) MFP  > (G7) MFP . The HVT of the glasses follow the order: (G1) HVT  > (G2) HVT  > (G3) HVT  > (G4) HVT  > (G5) HVT  > (G6) HVT  > (G7) HVT . EABUF and EBUF increase in the order (G1) (EABUF, EBUF)  > (G2) (EABUF, EBUF)  > (G3) (EABUF, EBUF)  > (G4) (EABUF, EBUF)  > (G5) (EABUF, EBUF)  > (G6) (EABUF, EBUF)  > (G7) (EABUF, EBUF) . The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.
doi_str_mv 10.1007/s10854-021-05447-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdTS_k4y7WvyDwrio4C5kMkmdUpOapIvZ-Q6-oU_i1BHcuTr3Xs45Fz4AzjG6xAiJq4SR5AwigiHijAnYH4AJ5oJCJsnLIZigigvIOCHH4CSlNUKoZFROwOrpNeTgC-3bwttdjvu5SSE2nV8VRm-16XJfBFfkLmuvs4XRdt6FaGxbNCEOl2K10SnZdF3ckJp-fXwuOlIPMtuM67KrySk4cnqT7NmvTsHz3e1y_gAX9f3jfLaAhuIqw7bV1tpSc8FIw0rjuMSilaw1xpFSUqIZalyLOS8trVxVVqISuJEYN9gQjOkUXIy92xjedzZltQ676IeXinDEkaxkWQ4uMrpMDClF69Q2dm869gojtQeqRqBqAKp-gKp-CNExlAazX9n4V_1P6hvO9nu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089866</pqid></control><display><type>article</type><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><source>Springer Link</source><creator>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</creator><creatorcontrib>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</creatorcontrib><description><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x  = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of µ m at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm 2 /g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV, µ m values vary according to the order (G1) µm  < (G2) µm  < (G3) µm  < (G4) µm  < (G5) µm  < (G6) µm  < (G7) µm . Values of LAC followed the order: (G7) LAC  > (G6) LAC  > (G5) LAC  > (G4) LAC  > (G3) LAC  > (G2) LAC  > (G1) LAC . The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1) MFP  > (G2) MFP  > (G3) MFP  > (G4) MFP  > (G5) MFP  > (G6) MFP  > (G7) MFP . The HVT of the glasses follow the order: (G1) HVT  > (G2) HVT  > (G3) HVT  > (G4) HVT  > (G5) HVT  > (G6) HVT  > (G7) HVT . EABUF and EBUF increase in the order (G1) (EABUF, EBUF)  > (G2) (EABUF, EBUF)  > (G3) (EABUF, EBUF)  > (G4) (EABUF, EBUF)  > (G5) (EABUF, EBUF)  > (G6) (EABUF, EBUF)  > (G7) (EABUF, EBUF) . The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05447-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Attenuation coefficients ; Boron oxides ; Characterization and Evaluation of Materials ; Charged particles ; Chemistry and Materials Science ; Fast neutrons ; Ionizing radiation ; Lithium oxides ; Materials Science ; Neutron absorbers ; Optical and Electronic Materials ; Photons ; Radiation ; Radiation shielding ; Science ; Titanium dioxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7377-7390</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</citedby><cites>FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</cites><orcidid>0000-0003-3106-5571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rammah, Y. S.</creatorcontrib><creatorcontrib>Olarinoye, I. O.</creatorcontrib><creatorcontrib>El-Agawany, F. I.</creatorcontrib><creatorcontrib>Akkurt, Iskender</creatorcontrib><creatorcontrib>Yousef, E.</creatorcontrib><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x  = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of µ m at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm 2 /g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV, µ m values vary according to the order (G1) µm  < (G2) µm  < (G3) µm  < (G4) µm  < (G5) µm  < (G6) µm  < (G7) µm . Values of LAC followed the order: (G7) LAC  > (G6) LAC  > (G5) LAC  > (G4) LAC  > (G3) LAC  > (G2) LAC  > (G1) LAC . The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1) MFP  > (G2) MFP  > (G3) MFP  > (G4) MFP  > (G5) MFP  > (G6) MFP  > (G7) MFP . The HVT of the glasses follow the order: (G1) HVT  > (G2) HVT  > (G3) HVT  > (G4) HVT  > (G5) HVT  > (G6) HVT  > (G7) HVT . EABUF and EBUF increase in the order (G1) (EABUF, EBUF)  > (G2) (EABUF, EBUF)  > (G3) (EABUF, EBUF)  > (G4) (EABUF, EBUF)  > (G5) (EABUF, EBUF)  > (G6) (EABUF, EBUF)  > (G7) (EABUF, EBUF) . The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></description><subject>Aluminum oxide</subject><subject>Attenuation coefficients</subject><subject>Boron oxides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charged particles</subject><subject>Chemistry and Materials Science</subject><subject>Fast neutrons</subject><subject>Ionizing radiation</subject><subject>Lithium oxides</subject><subject>Materials Science</subject><subject>Neutron absorbers</subject><subject>Optical and Electronic Materials</subject><subject>Photons</subject><subject>Radiation</subject><subject>Radiation shielding</subject><subject>Science</subject><subject>Titanium dioxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdTS_k4y7WvyDwrio4C5kMkmdUpOapIvZ-Q6-oU_i1BHcuTr3Xs45Fz4AzjG6xAiJq4SR5AwigiHijAnYH4AJ5oJCJsnLIZigigvIOCHH4CSlNUKoZFROwOrpNeTgC-3bwttdjvu5SSE2nV8VRm-16XJfBFfkLmuvs4XRdt6FaGxbNCEOl2K10SnZdF3ckJp-fXwuOlIPMtuM67KrySk4cnqT7NmvTsHz3e1y_gAX9f3jfLaAhuIqw7bV1tpSc8FIw0rjuMSilaw1xpFSUqIZalyLOS8trVxVVqISuJEYN9gQjOkUXIy92xjedzZltQ676IeXinDEkaxkWQ4uMrpMDClF69Q2dm869gojtQeqRqBqAKp-gKp-CNExlAazX9n4V_1P6hvO9nu8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Rammah, Y. S.</creator><creator>Olarinoye, I. O.</creator><creator>El-Agawany, F. I.</creator><creator>Akkurt, Iskender</creator><creator>Yousef, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3106-5571</orcidid></search><sort><creationdate>20210301</creationdate><title>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</title><author>Rammah, Y. S. ; Olarinoye, I. O. ; El-Agawany, F. I. ; Akkurt, Iskender ; Yousef, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Attenuation coefficients</topic><topic>Boron oxides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charged particles</topic><topic>Chemistry and Materials Science</topic><topic>Fast neutrons</topic><topic>Ionizing radiation</topic><topic>Lithium oxides</topic><topic>Materials Science</topic><topic>Neutron absorbers</topic><topic>Optical and Electronic Materials</topic><topic>Photons</topic><topic>Radiation</topic><topic>Radiation shielding</topic><topic>Science</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rammah, Y. S.</creatorcontrib><creatorcontrib>Olarinoye, I. O.</creatorcontrib><creatorcontrib>El-Agawany, F. I.</creatorcontrib><creatorcontrib>Akkurt, Iskender</creatorcontrib><creatorcontrib>Yousef, E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rammah, Y. S.</au><au>Olarinoye, I. O.</au><au>El-Agawany, F. I.</au><au>Akkurt, Iskender</au><au>Yousef, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>7377</spage><epage>7390</epage><pages>7377-7390</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract><![CDATA[The photon and neutron absorbing capacity of titanate-doped borate glasses: 65B 2 O 3 –30Li 2 O–5Al 2 O 3 – x TiO 2 : x  = 0–30 mol% coded as G1–G7 were investigated via WinXCOM and EXABCal computer codes. Mass ( µ m ) and linear (LAC) attenuation coefficients, mean-free path (MFP), half-value thickness (HVT), buildup factors (EABUF and EBUF), and the relative fast neutron absorbing efficacy were investigated. The maximum value of µ m at 15 keV was 1.68, 2.976, 4.119, 5.134, 6.042, 6.856, and 7.593 cm 2 /g for G1, G2, G3, G4, G5, G6, and G7, respectively. For energies below 0.1 MeV and above 10 meV, µ m values vary according to the order (G1) µm  < (G2) µm  < (G3) µm  < (G4) µm  < (G5) µm  < (G6) µm  < (G7) µm . Values of LAC followed the order: (G7) LAC  > (G6) LAC  > (G5) LAC  > (G4) LAC  > (G3) LAC  > (G2) LAC  > (G1) LAC . The trend of the MFP increases among the glasses follows a reverse order as that of LAC: (G1) MFP  > (G2) MFP  > (G3) MFP  > (G4) MFP  > (G5) MFP  > (G6) MFP  > (G7) MFP . The HVT of the glasses follow the order: (G1) HVT  > (G2) HVT  > (G3) HVT  > (G4) HVT  > (G5) HVT  > (G6) HVT  > (G7) HVT . EABUF and EBUF increase in the order (G1) (EABUF, EBUF)  > (G2) (EABUF, EBUF)  > (G3) (EABUF, EBUF)  > (G4) (EABUF, EBUF)  > (G5) (EABUF, EBUF)  > (G6) (EABUF, EBUF)  > (G7) (EABUF, EBUF) . The investigated glasses (G1–G7) are better fast neutron absorbers compared to ordinary concrete and water. Results revealed that higher titanate doping concentrations produced better photon and fast neutron shielding capacities. Therefore, the investigated glasses showed superior shielding efficacy when compared with some traditional shielding materials; consequently, the G1–G7 glasses are recommended for use as ionizing radiation shields.]]></abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05447-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3106-5571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7377-7390
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2505089866
source Springer Link
subjects Aluminum oxide
Attenuation coefficients
Boron oxides
Characterization and Evaluation of Materials
Charged particles
Chemistry and Materials Science
Fast neutrons
Ionizing radiation
Lithium oxides
Materials Science
Neutron absorbers
Optical and Electronic Materials
Photons
Radiation
Radiation shielding
Science
Titanium dioxide
title Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon%20and%20neutron%20absorbing%20capacity%20of%20titanate-reinforced%20borate%20glasses:%20B2O3%E2%80%93Li2O%E2%80%93Al2O3%E2%80%93TiO2&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Rammah,%20Y.%20S.&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=7377&rft.epage=7390&rft.pages=7377-7390&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05447-y&rft_dat=%3Cproquest_cross%3E2505089866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ddaeee6a5742b46cf5817d84dccf26832a40bfd1556e39f9697971b811b1c2113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505089866&rft_id=info:pmid/&rfr_iscdi=true