Loading…

Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS

The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the ass...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2021-06, Vol.56 (18), p.11059-11070
Main Authors: Yu, Xichen, Xing, Qingqing, Zhang, Xiaoping, Jiang, Hanlin, Cao, Fengren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3
cites cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3
container_end_page 11070
container_issue 18
container_start_page 11059
container_title Journal of materials science
container_volume 56
creator Yu, Xichen
Xing, Qingqing
Zhang, Xiaoping
Jiang, Hanlin
Cao, Fengren
description The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO 2 prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO 2 shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO 2 sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm −2 at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO 2 and CdS/TiO 2 , respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO 2 is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity. Graphical abstract
doi_str_mv 10.1007/s10853-021-06008-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505575178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505575178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTjzbppQy_YDDBieBNSJt06-iammSM_Xs7K3jnzTkceN73wIPQNYVbCiDvIgWVcQKMEsgBFFEnaEIzyYlQwE_RBIAxwkROz9FFjBsAyCSjE_TxuvbJu9ZVKfhq7bZNZVq8N8kFHPu2SanpVngXj3PZLBjuTOeDt9iEYA4RV35ALd43aY0_O2J9P1wz-3aJzmrTRnf1u6fo_fFhOXsm88XTy-x-TipOi0REXptC8FpKnrlclU5VzAomOC9pwXIL0oAVxhkmClfKUlBLIbdFWeXgQBk-RTdjbx_8187FpDd-F7rhpWYZZJnMqFQDxUaqCj7G4Grdh2ZrwkFT0EeBehSoB4H6R6A-hvgYigPcrVz4q_4n9Q21QHNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505575178</pqid></control><display><type>article</type><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><source>Springer Nature</source><creator>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</creator><creatorcontrib>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</creatorcontrib><description>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO 2 prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO 2 shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO 2 sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm −2 at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO 2 and CdS/TiO 2 , respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO 2 is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06008-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Atomic layer epitaxy ; Cadmium sulfide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electromagnetic absorption ; Energy Materials ; Heterojunctions ; Heterostructures ; Hydrothermal reactions ; Interlayers ; Materials Science ; Nanoparticles ; Nanorods ; Performance enhancement ; Photoelectric effect ; Photoelectric emission ; Polymer Sciences ; Solid Mechanics ; Titanium dioxide ; Water splitting ; Zinc coatings ; Zinc oxide</subject><ispartof>Journal of materials science, 2021-06, Vol.56 (18), p.11059-11070</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</citedby><cites>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</cites><orcidid>0000-0002-2912-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Xichen</creatorcontrib><creatorcontrib>Xing, Qingqing</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Jiang, Hanlin</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO 2 prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO 2 shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO 2 sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm −2 at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO 2 and CdS/TiO 2 , respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO 2 is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity. Graphical abstract</description><subject>Arrays</subject><subject>Atomic layer epitaxy</subject><subject>Cadmium sulfide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electromagnetic absorption</subject><subject>Energy Materials</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrothermal reactions</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Performance enhancement</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><subject>Zinc coatings</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTjzbppQy_YDDBieBNSJt06-iammSM_Xs7K3jnzTkceN73wIPQNYVbCiDvIgWVcQKMEsgBFFEnaEIzyYlQwE_RBIAxwkROz9FFjBsAyCSjE_TxuvbJu9ZVKfhq7bZNZVq8N8kFHPu2SanpVngXj3PZLBjuTOeDt9iEYA4RV35ALd43aY0_O2J9P1wz-3aJzmrTRnf1u6fo_fFhOXsm88XTy-x-TipOi0REXptC8FpKnrlclU5VzAomOC9pwXIL0oAVxhkmClfKUlBLIbdFWeXgQBk-RTdjbx_8187FpDd-F7rhpWYZZJnMqFQDxUaqCj7G4Grdh2ZrwkFT0EeBehSoB4H6R6A-hvgYigPcrVz4q_4n9Q21QHNR</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yu, Xichen</creator><creator>Xing, Qingqing</creator><creator>Zhang, Xiaoping</creator><creator>Jiang, Hanlin</creator><creator>Cao, Fengren</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2912-8281</orcidid></search><sort><creationdate>20210601</creationdate><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><author>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Atomic layer epitaxy</topic><topic>Cadmium sulfide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electromagnetic absorption</topic><topic>Energy Materials</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrothermal reactions</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Performance enhancement</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><topic>Zinc coatings</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xichen</creatorcontrib><creatorcontrib>Xing, Qingqing</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Jiang, Hanlin</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xichen</au><au>Xing, Qingqing</au><au>Zhang, Xiaoping</au><au>Jiang, Hanlin</au><au>Cao, Fengren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>56</volume><issue>18</issue><spage>11059</spage><epage>11070</epage><pages>11059-11070</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO 2 prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO 2 shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO 2 sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm −2 at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO 2 and CdS/TiO 2 , respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO 2 is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06008-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2912-8281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-06, Vol.56 (18), p.11059-11070
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2505575178
source Springer Nature
subjects Arrays
Atomic layer epitaxy
Cadmium sulfide
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electromagnetic absorption
Energy Materials
Heterojunctions
Heterostructures
Hydrothermal reactions
Interlayers
Materials Science
Nanoparticles
Nanorods
Performance enhancement
Photoelectric effect
Photoelectric emission
Polymer Sciences
Solid Mechanics
Titanium dioxide
Water splitting
Zinc coatings
Zinc oxide
title Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20water%20splitting%20using%20TiO2%20nanorod%20arrays%20coated%20with%20Zn-doped%20CdS&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yu,%20Xichen&rft.date=2021-06-01&rft.volume=56&rft.issue=18&rft.spage=11059&rft.epage=11070&rft.pages=11059-11070&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06008-8&rft_dat=%3Cproquest_cross%3E2505575178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505575178&rft_id=info:pmid/&rfr_iscdi=true