Loading…
Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS
The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO 2 nanorod array heterostructures through a facile hydrothermal process. With the ass...
Saved in:
Published in: | Journal of materials science 2021-06, Vol.56 (18), p.11059-11070 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3 |
container_end_page | 11070 |
container_issue | 18 |
container_start_page | 11059 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Yu, Xichen Xing, Qingqing Zhang, Xiaoping Jiang, Hanlin Cao, Fengren |
description | The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO
2
nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO
2
prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO
2
shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO
2
sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm
−2
at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO
2
and CdS/TiO
2
, respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO
2
is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity.
Graphical abstract |
doi_str_mv | 10.1007/s10853-021-06008-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505575178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505575178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTjzbppQy_YDDBieBNSJt06-iammSM_Xs7K3jnzTkceN73wIPQNYVbCiDvIgWVcQKMEsgBFFEnaEIzyYlQwE_RBIAxwkROz9FFjBsAyCSjE_TxuvbJu9ZVKfhq7bZNZVq8N8kFHPu2SanpVngXj3PZLBjuTOeDt9iEYA4RV35ALd43aY0_O2J9P1wz-3aJzmrTRnf1u6fo_fFhOXsm88XTy-x-TipOi0REXptC8FpKnrlclU5VzAomOC9pwXIL0oAVxhkmClfKUlBLIbdFWeXgQBk-RTdjbx_8187FpDd-F7rhpWYZZJnMqFQDxUaqCj7G4Grdh2ZrwkFT0EeBehSoB4H6R6A-hvgYigPcrVz4q_4n9Q21QHNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505575178</pqid></control><display><type>article</type><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><source>Springer Nature</source><creator>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</creator><creatorcontrib>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</creatorcontrib><description>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO
2
nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO
2
prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO
2
shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO
2
sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm
−2
at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO
2
and CdS/TiO
2
, respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO
2
is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06008-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Atomic layer epitaxy ; Cadmium sulfide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electromagnetic absorption ; Energy Materials ; Heterojunctions ; Heterostructures ; Hydrothermal reactions ; Interlayers ; Materials Science ; Nanoparticles ; Nanorods ; Performance enhancement ; Photoelectric effect ; Photoelectric emission ; Polymer Sciences ; Solid Mechanics ; Titanium dioxide ; Water splitting ; Zinc coatings ; Zinc oxide</subject><ispartof>Journal of materials science, 2021-06, Vol.56 (18), p.11059-11070</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</citedby><cites>FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</cites><orcidid>0000-0002-2912-8281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Xichen</creatorcontrib><creatorcontrib>Xing, Qingqing</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Jiang, Hanlin</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO
2
nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO
2
prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO
2
shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO
2
sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm
−2
at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO
2
and CdS/TiO
2
, respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO
2
is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity.
Graphical abstract</description><subject>Arrays</subject><subject>Atomic layer epitaxy</subject><subject>Cadmium sulfide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electromagnetic absorption</subject><subject>Energy Materials</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrothermal reactions</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Performance enhancement</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><subject>Zinc coatings</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19GTjzbppQy_YDDBieBNSJt06-iammSM_Xs7K3jnzTkceN73wIPQNYVbCiDvIgWVcQKMEsgBFFEnaEIzyYlQwE_RBIAxwkROz9FFjBsAyCSjE_TxuvbJu9ZVKfhq7bZNZVq8N8kFHPu2SanpVngXj3PZLBjuTOeDt9iEYA4RV35ALd43aY0_O2J9P1wz-3aJzmrTRnf1u6fo_fFhOXsm88XTy-x-TipOi0REXptC8FpKnrlclU5VzAomOC9pwXIL0oAVxhkmClfKUlBLIbdFWeXgQBk-RTdjbx_8187FpDd-F7rhpWYZZJnMqFQDxUaqCj7G4Grdh2ZrwkFT0EeBehSoB4H6R6A-hvgYigPcrVz4q_4n9Q21QHNR</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Yu, Xichen</creator><creator>Xing, Qingqing</creator><creator>Zhang, Xiaoping</creator><creator>Jiang, Hanlin</creator><creator>Cao, Fengren</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2912-8281</orcidid></search><sort><creationdate>20210601</creationdate><title>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</title><author>Yu, Xichen ; Xing, Qingqing ; Zhang, Xiaoping ; Jiang, Hanlin ; Cao, Fengren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Atomic layer epitaxy</topic><topic>Cadmium sulfide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electromagnetic absorption</topic><topic>Energy Materials</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrothermal reactions</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Performance enhancement</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><topic>Zinc coatings</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xichen</creatorcontrib><creatorcontrib>Xing, Qingqing</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Jiang, Hanlin</creatorcontrib><creatorcontrib>Cao, Fengren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xichen</au><au>Xing, Qingqing</au><au>Zhang, Xiaoping</au><au>Jiang, Hanlin</au><au>Cao, Fengren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>56</volume><issue>18</issue><spage>11059</spage><epage>11070</epage><pages>11059-11070</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO
2
nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO
2
prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO
2
shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO
2
sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm
−2
at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO
2
and CdS/TiO
2
, respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO
2
is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06008-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2912-8281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-06, Vol.56 (18), p.11059-11070 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2505575178 |
source | Springer Nature |
subjects | Arrays Atomic layer epitaxy Cadmium sulfide Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electromagnetic absorption Energy Materials Heterojunctions Heterostructures Hydrothermal reactions Interlayers Materials Science Nanoparticles Nanorods Performance enhancement Photoelectric effect Photoelectric emission Polymer Sciences Solid Mechanics Titanium dioxide Water splitting Zinc coatings Zinc oxide |
title | Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20water%20splitting%20using%20TiO2%20nanorod%20arrays%20coated%20with%20Zn-doped%20CdS&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yu,%20Xichen&rft.date=2021-06-01&rft.volume=56&rft.issue=18&rft.spage=11059&rft.epage=11070&rft.pages=11059-11070&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06008-8&rft_dat=%3Cproquest_cross%3E2505575178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-46fa943f7735e68be8c2d42433b1926d07a0d4aea249eb7b41d106d9bc60e08a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505575178&rft_id=info:pmid/&rfr_iscdi=true |