Loading…

minStab: Stable Network Evolution Rule Mining for System Changeability Analysis

Growing number of evolving systems creates demand for system evolution analytics with modern computational intelligence algorithms and tools. In this paper, we introduce new measures of stability and changeability for system evolution analysis over time. We proposed a Stable Network Evolution Rule M...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence 2021-04, Vol.5 (2), p.274-283
Main Authors: Chaturvedi, Animesh, Tiwari, Aruna, Spyratos, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3
cites cdi_FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3
container_end_page 283
container_issue 2
container_start_page 274
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 5
creator Chaturvedi, Animesh
Tiwari, Aruna
Spyratos, Nicolas
description Growing number of evolving systems creates demand for system evolution analytics with modern computational intelligence algorithms and tools. In this paper, we introduce new measures of stability and changeability for system evolution analysis over time. We proposed a Stable Network Evolution Rule Mining and a Changeability Metric for an evolving system. For this, we use two different characteristics of Network Evolution Rules (NERs). First, given a network of a system state S i , we call an NER interesting in S i if its support and confidence exceed given thresholds (minimum support and minimum confidence). Second, given a set of networks for a set of states (SS), we define the stability of an NER to be the percentage of states in SS in which the rule is interesting. We call an NER stable in SS if its stability exceeds a given threshold named as minimum stability (minStab). Based on this, we developed an intelligent tool, which is used for experiments on evolving systems. We applied our approach to a number of real-world systems including: software system, natural language system, retail market system, and IMDb system. It results Stable NERs and Changeability Metric value for each evolving system.
doi_str_mv 10.1109/TETCI.2019.2892734
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505609135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8680014</ieee_id><sourcerecordid>2505609135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOOa-gL4EfO68pMma-DbG1MFUcBN8C0mXzMyunUmr9NvbuSG-3B3H_e_-90PoksCQEJA3y-lyMhtSIHJIhaRZyk5Qj7KMJFTwt9N_9TkaxLgBACo5STnroeetLxe1Nrd4HwuLn2z9XYUPPP2qiqb2VYlfmq796EtfrrGrAl60sbZbPHnX5dpq4wtft3hc6qKNPl6gM6eLaAfH3Eevd529h2T-fD-bjOdJ3p2uE21IxiVAloo8HVnHKKcOWJ7aXAtKGZfSwMpZobkz2ujcUQarlTTMaWFInvbR9WHvLlSfjY212lRN6ExERTnwEcjuv26KHqbyUMUYrFO74Lc6tIqA2rNTv-zUnp06sutEVweRt9b-CcRIABCW_gAVYGti</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505609135</pqid></control><display><type>article</type><title>minStab: Stable Network Evolution Rule Mining for System Changeability Analysis</title><source>IEEE Xplore (Online service)</source><creator>Chaturvedi, Animesh ; Tiwari, Aruna ; Spyratos, Nicolas</creator><creatorcontrib>Chaturvedi, Animesh ; Tiwari, Aruna ; Spyratos, Nicolas</creatorcontrib><description>Growing number of evolving systems creates demand for system evolution analytics with modern computational intelligence algorithms and tools. In this paper, we introduce new measures of stability and changeability for system evolution analysis over time. We proposed a Stable Network Evolution Rule Mining and a Changeability Metric for an evolving system. For this, we use two different characteristics of Network Evolution Rules (NERs). First, given a network of a system state S i , we call an NER interesting in S i if its support and confidence exceed given thresholds (minimum support and minimum confidence). Second, given a set of networks for a set of states (SS), we define the stability of an NER to be the percentage of states in SS in which the rule is interesting. We call an NER stable in SS if its stability exceeds a given threshold named as minimum stability (minStab). Based on this, we developed an intelligent tool, which is used for experiments on evolving systems. We applied our approach to a number of real-world systems including: software system, natural language system, retail market system, and IMDb system. It results Stable NERs and Changeability Metric value for each evolving system.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2019.2892734</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; association rules ; Data mining ; Evolutionary algorithms ; Measurement ; network theory (graphs) ; Silicon ; Software ; Software systems ; Stability analysis ; Systems engineering and theory</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2021-04, Vol.5 (2), p.274-283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3</citedby><cites>FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3</cites><orcidid>0000-0002-9058-9052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8680014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chaturvedi, Animesh</creatorcontrib><creatorcontrib>Tiwari, Aruna</creatorcontrib><creatorcontrib>Spyratos, Nicolas</creatorcontrib><title>minStab: Stable Network Evolution Rule Mining for System Changeability Analysis</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>Growing number of evolving systems creates demand for system evolution analytics with modern computational intelligence algorithms and tools. In this paper, we introduce new measures of stability and changeability for system evolution analysis over time. We proposed a Stable Network Evolution Rule Mining and a Changeability Metric for an evolving system. For this, we use two different characteristics of Network Evolution Rules (NERs). First, given a network of a system state S i , we call an NER interesting in S i if its support and confidence exceed given thresholds (minimum support and minimum confidence). Second, given a set of networks for a set of states (SS), we define the stability of an NER to be the percentage of states in SS in which the rule is interesting. We call an NER stable in SS if its stability exceeds a given threshold named as minimum stability (minStab). Based on this, we developed an intelligent tool, which is used for experiments on evolving systems. We applied our approach to a number of real-world systems including: software system, natural language system, retail market system, and IMDb system. It results Stable NERs and Changeability Metric value for each evolving system.</description><subject>Artificial intelligence</subject><subject>association rules</subject><subject>Data mining</subject><subject>Evolutionary algorithms</subject><subject>Measurement</subject><subject>network theory (graphs)</subject><subject>Silicon</subject><subject>Software</subject><subject>Software systems</subject><subject>Stability analysis</subject><subject>Systems engineering and theory</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4MoOOa-gL4EfO68pMma-DbG1MFUcBN8C0mXzMyunUmr9NvbuSG-3B3H_e_-90PoksCQEJA3y-lyMhtSIHJIhaRZyk5Qj7KMJFTwt9N_9TkaxLgBACo5STnroeetLxe1Nrd4HwuLn2z9XYUPPP2qiqb2VYlfmq796EtfrrGrAl60sbZbPHnX5dpq4wtft3hc6qKNPl6gM6eLaAfH3Eevd529h2T-fD-bjOdJ3p2uE21IxiVAloo8HVnHKKcOWJ7aXAtKGZfSwMpZobkz2ujcUQarlTTMaWFInvbR9WHvLlSfjY212lRN6ExERTnwEcjuv26KHqbyUMUYrFO74Lc6tIqA2rNTv-zUnp06sutEVweRt9b-CcRIABCW_gAVYGti</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chaturvedi, Animesh</creator><creator>Tiwari, Aruna</creator><creator>Spyratos, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9058-9052</orcidid></search><sort><creationdate>20210401</creationdate><title>minStab: Stable Network Evolution Rule Mining for System Changeability Analysis</title><author>Chaturvedi, Animesh ; Tiwari, Aruna ; Spyratos, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>association rules</topic><topic>Data mining</topic><topic>Evolutionary algorithms</topic><topic>Measurement</topic><topic>network theory (graphs)</topic><topic>Silicon</topic><topic>Software</topic><topic>Software systems</topic><topic>Stability analysis</topic><topic>Systems engineering and theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaturvedi, Animesh</creatorcontrib><creatorcontrib>Tiwari, Aruna</creatorcontrib><creatorcontrib>Spyratos, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaturvedi, Animesh</au><au>Tiwari, Aruna</au><au>Spyratos, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>minStab: Stable Network Evolution Rule Mining for System Changeability Analysis</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>5</volume><issue>2</issue><spage>274</spage><epage>283</epage><pages>274-283</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>Growing number of evolving systems creates demand for system evolution analytics with modern computational intelligence algorithms and tools. In this paper, we introduce new measures of stability and changeability for system evolution analysis over time. We proposed a Stable Network Evolution Rule Mining and a Changeability Metric for an evolving system. For this, we use two different characteristics of Network Evolution Rules (NERs). First, given a network of a system state S i , we call an NER interesting in S i if its support and confidence exceed given thresholds (minimum support and minimum confidence). Second, given a set of networks for a set of states (SS), we define the stability of an NER to be the percentage of states in SS in which the rule is interesting. We call an NER stable in SS if its stability exceeds a given threshold named as minimum stability (minStab). Based on this, we developed an intelligent tool, which is used for experiments on evolving systems. We applied our approach to a number of real-world systems including: software system, natural language system, retail market system, and IMDb system. It results Stable NERs and Changeability Metric value for each evolving system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2019.2892734</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9058-9052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2021-04, Vol.5 (2), p.274-283
issn 2471-285X
2471-285X
language eng
recordid cdi_proquest_journals_2505609135
source IEEE Xplore (Online service)
subjects Artificial intelligence
association rules
Data mining
Evolutionary algorithms
Measurement
network theory (graphs)
Silicon
Software
Software systems
Stability analysis
Systems engineering and theory
title minStab: Stable Network Evolution Rule Mining for System Changeability Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=minStab:%20Stable%20Network%20Evolution%20Rule%20Mining%20for%20System%20Changeability%20Analysis&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Chaturvedi,%20Animesh&rft.date=2021-04-01&rft.volume=5&rft.issue=2&rft.spage=274&rft.epage=283&rft.pages=274-283&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2019.2892734&rft_dat=%3Cproquest_cross%3E2505609135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-ab175900738c36ef4252f04c3eca8224599b0dfe8a5fbabacf240dd9b4fa8b1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505609135&rft_id=info:pmid/&rft_ieee_id=8680014&rfr_iscdi=true