Loading…

Niobium Neuron: RSFQ Based Bio-Inspired Circuit

Neuromorphic and bio-inspired circuits have reached considerable attention since Moore's Law is coming to its limitations. Information processing in mammalian brains takes place in a far more energy-efficient manner and significantly faster than in the best computing architecture nowadays. We p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-5
Main Authors: Feldhoff, Frank, Toepfer, Hannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuromorphic and bio-inspired circuits have reached considerable attention since Moore's Law is coming to its limitations. Information processing in mammalian brains takes place in a far more energy-efficient manner and significantly faster than in the best computing architecture nowadays. We propose an approach to bring those benefits to a superconducting information processing circuit. Since the computation in a neuronal network is considered as analogue and the computation as digital, the design is grown around a Josephson comparator with its inherent non-linearity in the transfer function as the central information processing unit. Furthermore, a modified version of the Josephson Transmission Line is used to realize an adaptable coupling between neuron cells. This circuit design benefits of the noise in a 4.2 K environment and is therefore more resilient to noise and switching errors than conventional digital circuits. The proposed circuit behavior in a 2-neuron configuration and the integration in a network topology will be investigated.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2021.3063212