Loading…

Fatigue resistance of welded steel tubular X-joints

High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and man...

Full description

Saved in:
Bibliographic Details
Published in:Marine structures 2020-11, Vol.74, p.102809, Article 102809
Main Authors: Papatheocharis, Theocharis, Sarvanis, Gregory C., Perdikaris, Philip C., Karamanos, Spyros A., Zervaki, Anna D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583
cites cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583
container_end_page
container_issue
container_start_page 102809
container_title Marine structures
container_volume 74
creator Papatheocharis, Theocharis
Sarvanis, Gregory C.
Perdikaris, Philip C.
Karamanos, Spyros A.
Zervaki, Anna D.
description High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards. •Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.
doi_str_mv 10.1016/j.marstruc.2020.102809
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505725967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951833920301039</els_id><sourcerecordid>2505725967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouK5-BSl47prXNP9uyuKqsOBFwVtIk1dJqds1SRW_vV2qZ08Dj5l5zI-QS6AroCCuu9W7jSnH0a0qWh2OlaL6iCxASVbWIOkxWVDNoVSM6VNyllJHKUgAWBC2sTm8jVhETCFlu3NYDG3xhb1HX6SM2Bd5bMbexuK17Iawy-mcnLS2T3jxq0vysrl7Xj-U26f7x_XttnSsprlEwQRTNUqtdaN87aV3wC0wqRrNuWWVYC0I6VpUnHvqJMrGS8UsU0pyxZbkau7dx-FjxJRNN4xxN700FadcVlwLObnE7HJxSClia_YxTES-DVBzAGQ68wfIHACZGdAUvJmDOG34DBhNcgEnAD5EdNn4IfxX8QNtfnDF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725967</pqid></control><display><type>article</type><title>Fatigue resistance of welded steel tubular X-joints</title><source>Elsevier</source><creator>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</creator><creatorcontrib>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</creatorcontrib><description>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards. •Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</description><identifier>ISSN: 0951-8339</identifier><identifier>EISSN: 1873-4170</identifier><identifier>DOI: 10.1016/j.marstruc.2020.102809</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Automatic welding ; Crack initiation ; Deformation ; Design standards ; Diameters ; Fabrication ; Fatigue cracks ; Fatigue failure ; Fatigue of welds ; Fatigue strength ; Fatigue testing ; Fatigue tests ; High cycle fatigue ; Joints (timber) ; Metal fatigue ; Offshore ; Offshore operations ; Offshore platforms ; Offshore wind platform ; Residual structural strength ; Steel ; Steel tubes ; Ultimate tensile strength ; Welded tubular joints ; Welding ; Work platforms</subject><ispartof>Marine structures, 2020-11, Vol.74, p.102809, Article 102809</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</citedby><cites>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</cites><orcidid>0000-0003-0047-9173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Papatheocharis, Theocharis</creatorcontrib><creatorcontrib>Sarvanis, Gregory C.</creatorcontrib><creatorcontrib>Perdikaris, Philip C.</creatorcontrib><creatorcontrib>Karamanos, Spyros A.</creatorcontrib><creatorcontrib>Zervaki, Anna D.</creatorcontrib><title>Fatigue resistance of welded steel tubular X-joints</title><title>Marine structures</title><description>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards. •Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</description><subject>Automatic welding</subject><subject>Crack initiation</subject><subject>Deformation</subject><subject>Design standards</subject><subject>Diameters</subject><subject>Fabrication</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue of welds</subject><subject>Fatigue strength</subject><subject>Fatigue testing</subject><subject>Fatigue tests</subject><subject>High cycle fatigue</subject><subject>Joints (timber)</subject><subject>Metal fatigue</subject><subject>Offshore</subject><subject>Offshore operations</subject><subject>Offshore platforms</subject><subject>Offshore wind platform</subject><subject>Residual structural strength</subject><subject>Steel</subject><subject>Steel tubes</subject><subject>Ultimate tensile strength</subject><subject>Welded tubular joints</subject><subject>Welding</subject><subject>Work platforms</subject><issn>0951-8339</issn><issn>1873-4170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMouK5-BSl47prXNP9uyuKqsOBFwVtIk1dJqds1SRW_vV2qZ08Dj5l5zI-QS6AroCCuu9W7jSnH0a0qWh2OlaL6iCxASVbWIOkxWVDNoVSM6VNyllJHKUgAWBC2sTm8jVhETCFlu3NYDG3xhb1HX6SM2Bd5bMbexuK17Iawy-mcnLS2T3jxq0vysrl7Xj-U26f7x_XttnSsprlEwQRTNUqtdaN87aV3wC0wqRrNuWWVYC0I6VpUnHvqJMrGS8UsU0pyxZbkau7dx-FjxJRNN4xxN700FadcVlwLObnE7HJxSClia_YxTES-DVBzAGQ68wfIHACZGdAUvJmDOG34DBhNcgEnAD5EdNn4IfxX8QNtfnDF</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Papatheocharis, Theocharis</creator><creator>Sarvanis, Gregory C.</creator><creator>Perdikaris, Philip C.</creator><creator>Karamanos, Spyros A.</creator><creator>Zervaki, Anna D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0047-9173</orcidid></search><sort><creationdate>202011</creationdate><title>Fatigue resistance of welded steel tubular X-joints</title><author>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic welding</topic><topic>Crack initiation</topic><topic>Deformation</topic><topic>Design standards</topic><topic>Diameters</topic><topic>Fabrication</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue of welds</topic><topic>Fatigue strength</topic><topic>Fatigue testing</topic><topic>Fatigue tests</topic><topic>High cycle fatigue</topic><topic>Joints (timber)</topic><topic>Metal fatigue</topic><topic>Offshore</topic><topic>Offshore operations</topic><topic>Offshore platforms</topic><topic>Offshore wind platform</topic><topic>Residual structural strength</topic><topic>Steel</topic><topic>Steel tubes</topic><topic>Ultimate tensile strength</topic><topic>Welded tubular joints</topic><topic>Welding</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papatheocharis, Theocharis</creatorcontrib><creatorcontrib>Sarvanis, Gregory C.</creatorcontrib><creatorcontrib>Perdikaris, Philip C.</creatorcontrib><creatorcontrib>Karamanos, Spyros A.</creatorcontrib><creatorcontrib>Zervaki, Anna D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papatheocharis, Theocharis</au><au>Sarvanis, Gregory C.</au><au>Perdikaris, Philip C.</au><au>Karamanos, Spyros A.</au><au>Zervaki, Anna D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue resistance of welded steel tubular X-joints</atitle><jtitle>Marine structures</jtitle><date>2020-11</date><risdate>2020</risdate><volume>74</volume><spage>102809</spage><pages>102809-</pages><artnum>102809</artnum><issn>0951-8339</issn><eissn>1873-4170</eissn><abstract>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards. •Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marstruc.2020.102809</doi><orcidid>https://orcid.org/0000-0003-0047-9173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-8339
ispartof Marine structures, 2020-11, Vol.74, p.102809, Article 102809
issn 0951-8339
1873-4170
language eng
recordid cdi_proquest_journals_2505725967
source Elsevier
subjects Automatic welding
Crack initiation
Deformation
Design standards
Diameters
Fabrication
Fatigue cracks
Fatigue failure
Fatigue of welds
Fatigue strength
Fatigue testing
Fatigue tests
High cycle fatigue
Joints (timber)
Metal fatigue
Offshore
Offshore operations
Offshore platforms
Offshore wind platform
Residual structural strength
Steel
Steel tubes
Ultimate tensile strength
Welded tubular joints
Welding
Work platforms
title Fatigue resistance of welded steel tubular X-joints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20resistance%20of%20welded%20steel%20tubular%20X-joints&rft.jtitle=Marine%20structures&rft.au=Papatheocharis,%20Theocharis&rft.date=2020-11&rft.volume=74&rft.spage=102809&rft.pages=102809-&rft.artnum=102809&rft.issn=0951-8339&rft.eissn=1873-4170&rft_id=info:doi/10.1016/j.marstruc.2020.102809&rft_dat=%3Cproquest_cross%3E2505725967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505725967&rft_id=info:pmid/&rfr_iscdi=true