Loading…
Fatigue resistance of welded steel tubular X-joints
High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and man...
Saved in:
Published in: | Marine structures 2020-11, Vol.74, p.102809, Article 102809 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583 |
container_end_page | |
container_issue | |
container_start_page | 102809 |
container_title | Marine structures |
container_volume | 74 |
creator | Papatheocharis, Theocharis Sarvanis, Gregory C. Perdikaris, Philip C. Karamanos, Spyros A. Zervaki, Anna D. |
description | High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.
•Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes. |
doi_str_mv | 10.1016/j.marstruc.2020.102809 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505725967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951833920301039</els_id><sourcerecordid>2505725967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouK5-BSl47prXNP9uyuKqsOBFwVtIk1dJqds1SRW_vV2qZ08Dj5l5zI-QS6AroCCuu9W7jSnH0a0qWh2OlaL6iCxASVbWIOkxWVDNoVSM6VNyllJHKUgAWBC2sTm8jVhETCFlu3NYDG3xhb1HX6SM2Bd5bMbexuK17Iawy-mcnLS2T3jxq0vysrl7Xj-U26f7x_XttnSsprlEwQRTNUqtdaN87aV3wC0wqRrNuWWVYC0I6VpUnHvqJMrGS8UsU0pyxZbkau7dx-FjxJRNN4xxN700FadcVlwLObnE7HJxSClia_YxTES-DVBzAGQ68wfIHACZGdAUvJmDOG34DBhNcgEnAD5EdNn4IfxX8QNtfnDF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725967</pqid></control><display><type>article</type><title>Fatigue resistance of welded steel tubular X-joints</title><source>Elsevier</source><creator>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</creator><creatorcontrib>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</creatorcontrib><description>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.
•Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</description><identifier>ISSN: 0951-8339</identifier><identifier>EISSN: 1873-4170</identifier><identifier>DOI: 10.1016/j.marstruc.2020.102809</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Automatic welding ; Crack initiation ; Deformation ; Design standards ; Diameters ; Fabrication ; Fatigue cracks ; Fatigue failure ; Fatigue of welds ; Fatigue strength ; Fatigue testing ; Fatigue tests ; High cycle fatigue ; Joints (timber) ; Metal fatigue ; Offshore ; Offshore operations ; Offshore platforms ; Offshore wind platform ; Residual structural strength ; Steel ; Steel tubes ; Ultimate tensile strength ; Welded tubular joints ; Welding ; Work platforms</subject><ispartof>Marine structures, 2020-11, Vol.74, p.102809, Article 102809</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</citedby><cites>FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</cites><orcidid>0000-0003-0047-9173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Papatheocharis, Theocharis</creatorcontrib><creatorcontrib>Sarvanis, Gregory C.</creatorcontrib><creatorcontrib>Perdikaris, Philip C.</creatorcontrib><creatorcontrib>Karamanos, Spyros A.</creatorcontrib><creatorcontrib>Zervaki, Anna D.</creatorcontrib><title>Fatigue resistance of welded steel tubular X-joints</title><title>Marine structures</title><description>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.
•Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</description><subject>Automatic welding</subject><subject>Crack initiation</subject><subject>Deformation</subject><subject>Design standards</subject><subject>Diameters</subject><subject>Fabrication</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue of welds</subject><subject>Fatigue strength</subject><subject>Fatigue testing</subject><subject>Fatigue tests</subject><subject>High cycle fatigue</subject><subject>Joints (timber)</subject><subject>Metal fatigue</subject><subject>Offshore</subject><subject>Offshore operations</subject><subject>Offshore platforms</subject><subject>Offshore wind platform</subject><subject>Residual structural strength</subject><subject>Steel</subject><subject>Steel tubes</subject><subject>Ultimate tensile strength</subject><subject>Welded tubular joints</subject><subject>Welding</subject><subject>Work platforms</subject><issn>0951-8339</issn><issn>1873-4170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMouK5-BSl47prXNP9uyuKqsOBFwVtIk1dJqds1SRW_vV2qZ08Dj5l5zI-QS6AroCCuu9W7jSnH0a0qWh2OlaL6iCxASVbWIOkxWVDNoVSM6VNyllJHKUgAWBC2sTm8jVhETCFlu3NYDG3xhb1HX6SM2Bd5bMbexuK17Iawy-mcnLS2T3jxq0vysrl7Xj-U26f7x_XttnSsprlEwQRTNUqtdaN87aV3wC0wqRrNuWWVYC0I6VpUnHvqJMrGS8UsU0pyxZbkau7dx-FjxJRNN4xxN700FadcVlwLObnE7HJxSClia_YxTES-DVBzAGQ68wfIHACZGdAUvJmDOG34DBhNcgEnAD5EdNn4IfxX8QNtfnDF</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Papatheocharis, Theocharis</creator><creator>Sarvanis, Gregory C.</creator><creator>Perdikaris, Philip C.</creator><creator>Karamanos, Spyros A.</creator><creator>Zervaki, Anna D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0047-9173</orcidid></search><sort><creationdate>202011</creationdate><title>Fatigue resistance of welded steel tubular X-joints</title><author>Papatheocharis, Theocharis ; Sarvanis, Gregory C. ; Perdikaris, Philip C. ; Karamanos, Spyros A. ; Zervaki, Anna D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic welding</topic><topic>Crack initiation</topic><topic>Deformation</topic><topic>Design standards</topic><topic>Diameters</topic><topic>Fabrication</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue of welds</topic><topic>Fatigue strength</topic><topic>Fatigue testing</topic><topic>Fatigue tests</topic><topic>High cycle fatigue</topic><topic>Joints (timber)</topic><topic>Metal fatigue</topic><topic>Offshore</topic><topic>Offshore operations</topic><topic>Offshore platforms</topic><topic>Offshore wind platform</topic><topic>Residual structural strength</topic><topic>Steel</topic><topic>Steel tubes</topic><topic>Ultimate tensile strength</topic><topic>Welded tubular joints</topic><topic>Welding</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papatheocharis, Theocharis</creatorcontrib><creatorcontrib>Sarvanis, Gregory C.</creatorcontrib><creatorcontrib>Perdikaris, Philip C.</creatorcontrib><creatorcontrib>Karamanos, Spyros A.</creatorcontrib><creatorcontrib>Zervaki, Anna D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papatheocharis, Theocharis</au><au>Sarvanis, Gregory C.</au><au>Perdikaris, Philip C.</au><au>Karamanos, Spyros A.</au><au>Zervaki, Anna D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue resistance of welded steel tubular X-joints</atitle><jtitle>Marine structures</jtitle><date>2020-11</date><risdate>2020</risdate><volume>74</volume><spage>102809</spage><pages>102809-</pages><artnum>102809</artnum><issn>0951-8339</issn><eissn>1873-4170</eissn><abstract>High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.
•Fatigue tests are performed on tubular joints with β = 1 and three weld procedures.•Fatigue initiation sites are identified: chord “crown” and “in-between” points.•Μonotonic-load tests are performed on fractured joints to determine their strength.•Fractography verifies fatigue initiation sites and correlates with weld defects.•Test results are compared with fatigue life predictions from relevant design codes.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marstruc.2020.102809</doi><orcidid>https://orcid.org/0000-0003-0047-9173</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8339 |
ispartof | Marine structures, 2020-11, Vol.74, p.102809, Article 102809 |
issn | 0951-8339 1873-4170 |
language | eng |
recordid | cdi_proquest_journals_2505725967 |
source | Elsevier |
subjects | Automatic welding Crack initiation Deformation Design standards Diameters Fabrication Fatigue cracks Fatigue failure Fatigue of welds Fatigue strength Fatigue testing Fatigue tests High cycle fatigue Joints (timber) Metal fatigue Offshore Offshore operations Offshore platforms Offshore wind platform Residual structural strength Steel Steel tubes Ultimate tensile strength Welded tubular joints Welding Work platforms |
title | Fatigue resistance of welded steel tubular X-joints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20resistance%20of%20welded%20steel%20tubular%20X-joints&rft.jtitle=Marine%20structures&rft.au=Papatheocharis,%20Theocharis&rft.date=2020-11&rft.volume=74&rft.spage=102809&rft.pages=102809-&rft.artnum=102809&rft.issn=0951-8339&rft.eissn=1873-4170&rft_id=info:doi/10.1016/j.marstruc.2020.102809&rft_dat=%3Cproquest_cross%3E2505725967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-e636384e7999b8d4d7dc15a1378b955a3263f167cfe855d0c7e7bd783a3887583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505725967&rft_id=info:pmid/&rfr_iscdi=true |