Loading…
Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities
We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cu...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2020-09, Vol.80 (5), p.1142-1163 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273 |
container_end_page | 1163 |
container_issue | 5 |
container_start_page | 1142 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 80 |
creator | Kim, Seokchan Palta, Birce Oh, Hae-Soo |
description | We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors. |
doi_str_mv | 10.1016/j.camwa.2020.05.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505726792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120302480</els_id><sourcerecordid>2505726792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</originalsourceid><addsrcrecordid>eNp9kMtOBCEQRYnRxHH0C9yQuO62gKbpWbgwxldi4kbXhKkGZR6gwPj4exnHtauqxbmnUpeQUwYtA9afL1o060_TcuDQgmyB93tkwgYlGtX3wz6ZwDAbGsY5OyRHOS8AoBMcJmR5_VWSweJjoC6m9WZlMo2O5pJsztSHYkP25Zu6CsWUtxAtr5bO_atJ6xg8Uvu-MVtBphhDMT748EKxWpc017Uqky_e5mNy4Mwq25O_OSXPN9dPV3fNw-Pt_dXlQ4NCsNIw0c1BoUQ5mBnKUc27QcIgkM_mDoxTBrhTYhw7NAxGK1k_cOxGdOBQciWm5GznfUvxfWNz0Yu4SaGe1FyCVLxXM14psaMwxZyTdfot-bVJ35qB3raqF_q3Vb1tVYPUtdWautilbH3gw9ukM3ob0I4-WSx6jP7f_A_UK4Q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726792</pqid></control><display><type>article</type><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><source>ScienceDirect Journals</source><creator>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</creator><creatorcontrib>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</creatorcontrib><description>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.05.026</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biharmonic equations ; Boundary conditions ; Crack singularity ; Enriched Galerkin Method ; Galerkin method ; Harmonic functions ; Hermite elements and B-splines ; Integrals ; Isotopes ; Iterative Method ; Mathematical analysis ; Singularity (mathematics) ; Stress intensity factor ; Stress intensity factors</subject><ispartof>Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.1142-1163</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</citedby><cites>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</cites><orcidid>0000-0003-4171-3325 ; 0000-0002-7237-1877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Palta, Birce</creatorcontrib><creatorcontrib>Oh, Hae-Soo</creatorcontrib><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><title>Computers & mathematics with applications (1987)</title><description>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</description><subject>Biharmonic equations</subject><subject>Boundary conditions</subject><subject>Crack singularity</subject><subject>Enriched Galerkin Method</subject><subject>Galerkin method</subject><subject>Harmonic functions</subject><subject>Hermite elements and B-splines</subject><subject>Integrals</subject><subject>Isotopes</subject><subject>Iterative Method</subject><subject>Mathematical analysis</subject><subject>Singularity (mathematics)</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOBCEQRYnRxHH0C9yQuO62gKbpWbgwxldi4kbXhKkGZR6gwPj4exnHtauqxbmnUpeQUwYtA9afL1o060_TcuDQgmyB93tkwgYlGtX3wz6ZwDAbGsY5OyRHOS8AoBMcJmR5_VWSweJjoC6m9WZlMo2O5pJsztSHYkP25Zu6CsWUtxAtr5bO_atJ6xg8Uvu-MVtBphhDMT748EKxWpc017Uqky_e5mNy4Mwq25O_OSXPN9dPV3fNw-Pt_dXlQ4NCsNIw0c1BoUQ5mBnKUc27QcIgkM_mDoxTBrhTYhw7NAxGK1k_cOxGdOBQciWm5GznfUvxfWNz0Yu4SaGe1FyCVLxXM14psaMwxZyTdfot-bVJ35qB3raqF_q3Vb1tVYPUtdWautilbH3gw9ukM3ob0I4-WSx6jP7f_A_UK4Q0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kim, Seokchan</creator><creator>Palta, Birce</creator><creator>Oh, Hae-Soo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-7237-1877</orcidid></search><sort><creationdate>20200901</creationdate><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><author>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biharmonic equations</topic><topic>Boundary conditions</topic><topic>Crack singularity</topic><topic>Enriched Galerkin Method</topic><topic>Galerkin method</topic><topic>Harmonic functions</topic><topic>Hermite elements and B-splines</topic><topic>Integrals</topic><topic>Isotopes</topic><topic>Iterative Method</topic><topic>Mathematical analysis</topic><topic>Singularity (mathematics)</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Palta, Birce</creatorcontrib><creatorcontrib>Oh, Hae-Soo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokchan</au><au>Palta, Birce</au><au>Oh, Hae-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>1142</spage><epage>1163</epage><pages>1142-1163</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.05.026</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-7237-1877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.1142-1163 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2505726792 |
source | ScienceDirect Journals |
subjects | Biharmonic equations Boundary conditions Crack singularity Enriched Galerkin Method Galerkin method Harmonic functions Hermite elements and B-splines Integrals Isotopes Iterative Method Mathematical analysis Singularity (mathematics) Stress intensity factor Stress intensity factors |
title | Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20formulas%20of%20stress%20intensity%20factors%20for%20the%20biharmonic%20equations%20containing%20crack%20singularities&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Kim,%20Seokchan&rft.date=2020-09-01&rft.volume=80&rft.issue=5&rft.spage=1142&rft.epage=1163&rft.pages=1142-1163&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.05.026&rft_dat=%3Cproquest_cross%3E2505726792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505726792&rft_id=info:pmid/&rfr_iscdi=true |