Loading…

Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities

We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cu...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2020-09, Vol.80 (5), p.1142-1163
Main Authors: Kim, Seokchan, Palta, Birce, Oh, Hae-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273
cites cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273
container_end_page 1163
container_issue 5
container_start_page 1142
container_title Computers & mathematics with applications (1987)
container_volume 80
creator Kim, Seokchan
Palta, Birce
Oh, Hae-Soo
description We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.
doi_str_mv 10.1016/j.camwa.2020.05.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505726792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120302480</els_id><sourcerecordid>2505726792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</originalsourceid><addsrcrecordid>eNp9kMtOBCEQRYnRxHH0C9yQuO62gKbpWbgwxldi4kbXhKkGZR6gwPj4exnHtauqxbmnUpeQUwYtA9afL1o060_TcuDQgmyB93tkwgYlGtX3wz6ZwDAbGsY5OyRHOS8AoBMcJmR5_VWSweJjoC6m9WZlMo2O5pJsztSHYkP25Zu6CsWUtxAtr5bO_atJ6xg8Uvu-MVtBphhDMT748EKxWpc017Uqky_e5mNy4Mwq25O_OSXPN9dPV3fNw-Pt_dXlQ4NCsNIw0c1BoUQ5mBnKUc27QcIgkM_mDoxTBrhTYhw7NAxGK1k_cOxGdOBQciWm5GznfUvxfWNz0Yu4SaGe1FyCVLxXM14psaMwxZyTdfot-bVJ35qB3raqF_q3Vb1tVYPUtdWautilbH3gw9ukM3ob0I4-WSx6jP7f_A_UK4Q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726792</pqid></control><display><type>article</type><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><source>ScienceDirect Journals</source><creator>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</creator><creatorcontrib>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</creatorcontrib><description>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.05.026</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biharmonic equations ; Boundary conditions ; Crack singularity ; Enriched Galerkin Method ; Galerkin method ; Harmonic functions ; Hermite elements and B-splines ; Integrals ; Isotopes ; Iterative Method ; Mathematical analysis ; Singularity (mathematics) ; Stress intensity factor ; Stress intensity factors</subject><ispartof>Computers &amp; mathematics with applications (1987), 2020-09, Vol.80 (5), p.1142-1163</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</citedby><cites>FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</cites><orcidid>0000-0003-4171-3325 ; 0000-0002-7237-1877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Palta, Birce</creatorcontrib><creatorcontrib>Oh, Hae-Soo</creatorcontrib><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><title>Computers &amp; mathematics with applications (1987)</title><description>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</description><subject>Biharmonic equations</subject><subject>Boundary conditions</subject><subject>Crack singularity</subject><subject>Enriched Galerkin Method</subject><subject>Galerkin method</subject><subject>Harmonic functions</subject><subject>Hermite elements and B-splines</subject><subject>Integrals</subject><subject>Isotopes</subject><subject>Iterative Method</subject><subject>Mathematical analysis</subject><subject>Singularity (mathematics)</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOBCEQRYnRxHH0C9yQuO62gKbpWbgwxldi4kbXhKkGZR6gwPj4exnHtauqxbmnUpeQUwYtA9afL1o060_TcuDQgmyB93tkwgYlGtX3wz6ZwDAbGsY5OyRHOS8AoBMcJmR5_VWSweJjoC6m9WZlMo2O5pJsztSHYkP25Zu6CsWUtxAtr5bO_atJ6xg8Uvu-MVtBphhDMT748EKxWpc017Uqky_e5mNy4Mwq25O_OSXPN9dPV3fNw-Pt_dXlQ4NCsNIw0c1BoUQ5mBnKUc27QcIgkM_mDoxTBrhTYhw7NAxGK1k_cOxGdOBQciWm5GznfUvxfWNz0Yu4SaGe1FyCVLxXM14psaMwxZyTdfot-bVJ35qB3raqF_q3Vb1tVYPUtdWautilbH3gw9ukM3ob0I4-WSx6jP7f_A_UK4Q0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kim, Seokchan</creator><creator>Palta, Birce</creator><creator>Oh, Hae-Soo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-7237-1877</orcidid></search><sort><creationdate>20200901</creationdate><title>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</title><author>Kim, Seokchan ; Palta, Birce ; Oh, Hae-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biharmonic equations</topic><topic>Boundary conditions</topic><topic>Crack singularity</topic><topic>Enriched Galerkin Method</topic><topic>Galerkin method</topic><topic>Harmonic functions</topic><topic>Hermite elements and B-splines</topic><topic>Integrals</topic><topic>Isotopes</topic><topic>Iterative Method</topic><topic>Mathematical analysis</topic><topic>Singularity (mathematics)</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Palta, Birce</creatorcontrib><creatorcontrib>Oh, Hae-Soo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokchan</au><au>Palta, Birce</au><au>Oh, Hae-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>80</volume><issue>5</issue><spage>1142</spage><epage>1163</epage><pages>1142-1163</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We derive formulas extracting stress intensity factors of the biharmonic equations on cracked domains with clamped (or simply supported or free) boundary conditions along the crack faces. Each of these formulas can be written in terms of the integral of the given source function multiplied by the cut-off dual singularity and the integral of the unknown true solution multiplied by the cut-off dual singularity over the unit disk. The unknown true solution in the extraction formulas is calculated by either the Implicitly Enriched Galerkin Method or the Iteration Methods. The former was developed by the authors (Kim, Oh, Palta, Kim) and the latter proposed in this paper is the sum of the solution of a regular biharmonic equation and singular functions with iteratively estimated stress intensity factors as coefficients. We show the Iteration Methods quickly converge and the proposed Enrichment Method yields highly accurate stress intensity factors. We also demonstrate that for a known true solution, the extraction formulas yield exact stress intensity factors.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.05.026</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-7237-1877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2020-09, Vol.80 (5), p.1142-1163
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2505726792
source ScienceDirect Journals
subjects Biharmonic equations
Boundary conditions
Crack singularity
Enriched Galerkin Method
Galerkin method
Harmonic functions
Hermite elements and B-splines
Integrals
Isotopes
Iterative Method
Mathematical analysis
Singularity (mathematics)
Stress intensity factor
Stress intensity factors
title Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20formulas%20of%20stress%20intensity%20factors%20for%20the%20biharmonic%20equations%20containing%20crack%20singularities&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Kim,%20Seokchan&rft.date=2020-09-01&rft.volume=80&rft.issue=5&rft.spage=1142&rft.epage=1163&rft.pages=1142-1163&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.05.026&rft_dat=%3Cproquest_cross%3E2505726792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-134b07c5c58a9c5d7b485083c29bf0af7a02f73dd4ca10de51682c4dcf0fc5273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505726792&rft_id=info:pmid/&rfr_iscdi=true