Loading…

An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks

We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach reduces energy consumption spent processing and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2021-04, Vol.56 (4), p.1071-1081
Main Authors: An, Hyochan, Schiferl, Sam, Venkatesan, Siddharth, Wesley, Tim, Zhang, Qirui, Wang, Jingcheng, Choo, Kyojin D., Liu, Shiyu, Liu, Bowen, Li, Ziyun, Gong, Luyao, Zhong, Hengfei, Blaauw, David, Dreslinski, Ronald, Kim, Hun Seok, Sylvester, Dennis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583
cites cdi_FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583
container_end_page 1081
container_issue 4
container_start_page 1071
container_title IEEE journal of solid-state circuits
container_volume 56
creator An, Hyochan
Schiferl, Sam
Venkatesan, Siddharth
Wesley, Tim
Zhang, Qirui
Wang, Jingcheng
Choo, Kyojin D.
Liu, Shiyu
Liu, Bowen
Li, Ziyun
Gong, Luyao
Zhong, Hengfei
Blaauw, David
Dreslinski, Ronald
Kim, Hun Seok
Sylvester, Dennis
description We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach reduces energy consumption spent processing and transmitting unimportant image data to achieve a 16 \times imaging system energy gain in an intruder detection scenario. The ISP was fabricated in 40-nm CMOS and consumes only 170 \mu \text{W} at 5 frames/s for neural network-based intruder detection and 192 \times compressed image recording.
doi_str_mv 10.1109/JSSC.2020.3041858
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2506473324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293122</ieee_id><sourcerecordid>2506473324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583</originalsourceid><addsrcrecordid>eNo9kEtPwkAQgDdGExH9AcZLE8_FmX202yPBBxiCRCR6a7ZlCkXo4m4J8d9bUuJhMpnMN5OZj7FbhB4iJA-vs9mgx4FDT4BErfQZ66BSOsRYfJ2zDgDqMOEAl-zK-3VTSqmxw4p-Fcw3tTPh2B7CqT2QC0Zbs6RgVi4rswmmzubkvXVB0cSwJGdcvirzptVy75TbZVXWpa2Cz7JeBY9Eu2BCe9cgE6oP1n37a3ZRmI2nm1Pusvnz08dgGI7fXkaD_jjMeSLqMIkzkaGRuSGOERBJzYlDrCIJqsBoUWiVoUhElAAsYpAgiHQiSJkMUWnRZfft3p2zP3vydbq2e9f84VOuIJKxEFw2FLZU7qz3jop058qtcb8pQnrUmR51pked6UlnM3PXzpRE9M8nzdnIufgD1Ilvzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506473324</pqid></control><display><type>article</type><title>An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>An, Hyochan ; Schiferl, Sam ; Venkatesan, Siddharth ; Wesley, Tim ; Zhang, Qirui ; Wang, Jingcheng ; Choo, Kyojin D. ; Liu, Shiyu ; Liu, Bowen ; Li, Ziyun ; Gong, Luyao ; Zhong, Hengfei ; Blaauw, David ; Dreslinski, Ronald ; Kim, Hun Seok ; Sylvester, Dennis</creator><creatorcontrib>An, Hyochan ; Schiferl, Sam ; Venkatesan, Siddharth ; Wesley, Tim ; Zhang, Qirui ; Wang, Jingcheng ; Choo, Kyojin D. ; Liu, Shiyu ; Liu, Bowen ; Li, Ziyun ; Gong, Luyao ; Zhong, Hengfei ; Blaauw, David ; Dreslinski, Ronald ; Kim, Hun Seok ; Sylvester, Dennis</creatorcontrib><description><![CDATA[We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach reduces energy consumption spent processing and transmitting unimportant image data to achieve a 16<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> imaging system energy gain in an intruder detection scenario. The ISP was fabricated in 40-nm CMOS and consumes only 170 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 5 frames/s for neural network-based intruder detection and 192<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> compressed image recording.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2020.3041858</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; CMOS ; Deep neural network (DNN) ; Energy consumption ; energy-efficient processor ; Engines ; event recognition ; Face recognition ; Image coding ; Image compression ; image signal processor (ISP) ; Image transmission ; Imaging ; Microprocessors ; Neural networks ; Object recognition ; Power management ; Random access memory ; Signal processing ; Streaming media ; Transform coding</subject><ispartof>IEEE journal of solid-state circuits, 2021-04, Vol.56 (4), p.1071-1081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583</citedby><cites>FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583</cites><orcidid>0000-0001-6744-7075 ; 0000-0001-8113-3558 ; 0000-0001-5831-9063 ; 0000-0002-6322-025X ; 0000-0001-6070-6310 ; 0000-0001-6046-6599 ; 0000-0001-8119-094X ; 0000-0003-2598-0458 ; 0000-0002-6658-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>An, Hyochan</creatorcontrib><creatorcontrib>Schiferl, Sam</creatorcontrib><creatorcontrib>Venkatesan, Siddharth</creatorcontrib><creatorcontrib>Wesley, Tim</creatorcontrib><creatorcontrib>Zhang, Qirui</creatorcontrib><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Choo, Kyojin D.</creatorcontrib><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Li, Ziyun</creatorcontrib><creatorcontrib>Gong, Luyao</creatorcontrib><creatorcontrib>Zhong, Hengfei</creatorcontrib><creatorcontrib>Blaauw, David</creatorcontrib><creatorcontrib>Dreslinski, Ronald</creatorcontrib><creatorcontrib>Kim, Hun Seok</creatorcontrib><creatorcontrib>Sylvester, Dennis</creatorcontrib><title>An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach reduces energy consumption spent processing and transmitting unimportant image data to achieve a 16<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> imaging system energy gain in an intruder detection scenario. The ISP was fabricated in 40-nm CMOS and consumes only 170 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 5 frames/s for neural network-based intruder detection and 192<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> compressed image recording.]]></description><subject>Artificial neural networks</subject><subject>CMOS</subject><subject>Deep neural network (DNN)</subject><subject>Energy consumption</subject><subject>energy-efficient processor</subject><subject>Engines</subject><subject>event recognition</subject><subject>Face recognition</subject><subject>Image coding</subject><subject>Image compression</subject><subject>image signal processor (ISP)</subject><subject>Image transmission</subject><subject>Imaging</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Power management</subject><subject>Random access memory</subject><subject>Signal processing</subject><subject>Streaming media</subject><subject>Transform coding</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAQgDdGExH9AcZLE8_FmX202yPBBxiCRCR6a7ZlCkXo4m4J8d9bUuJhMpnMN5OZj7FbhB4iJA-vs9mgx4FDT4BErfQZ66BSOsRYfJ2zDgDqMOEAl-zK-3VTSqmxw4p-Fcw3tTPh2B7CqT2QC0Zbs6RgVi4rswmmzubkvXVB0cSwJGdcvirzptVy75TbZVXWpa2Cz7JeBY9Eu2BCe9cgE6oP1n37a3ZRmI2nm1Pusvnz08dgGI7fXkaD_jjMeSLqMIkzkaGRuSGOERBJzYlDrCIJqsBoUWiVoUhElAAsYpAgiHQiSJkMUWnRZfft3p2zP3vydbq2e9f84VOuIJKxEFw2FLZU7qz3jop058qtcb8pQnrUmR51pked6UlnM3PXzpRE9M8nzdnIufgD1Ilvzg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>An, Hyochan</creator><creator>Schiferl, Sam</creator><creator>Venkatesan, Siddharth</creator><creator>Wesley, Tim</creator><creator>Zhang, Qirui</creator><creator>Wang, Jingcheng</creator><creator>Choo, Kyojin D.</creator><creator>Liu, Shiyu</creator><creator>Liu, Bowen</creator><creator>Li, Ziyun</creator><creator>Gong, Luyao</creator><creator>Zhong, Hengfei</creator><creator>Blaauw, David</creator><creator>Dreslinski, Ronald</creator><creator>Kim, Hun Seok</creator><creator>Sylvester, Dennis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6744-7075</orcidid><orcidid>https://orcid.org/0000-0001-8113-3558</orcidid><orcidid>https://orcid.org/0000-0001-5831-9063</orcidid><orcidid>https://orcid.org/0000-0002-6322-025X</orcidid><orcidid>https://orcid.org/0000-0001-6070-6310</orcidid><orcidid>https://orcid.org/0000-0001-6046-6599</orcidid><orcidid>https://orcid.org/0000-0001-8119-094X</orcidid><orcidid>https://orcid.org/0000-0003-2598-0458</orcidid><orcidid>https://orcid.org/0000-0002-6658-5502</orcidid></search><sort><creationdate>20210401</creationdate><title>An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks</title><author>An, Hyochan ; Schiferl, Sam ; Venkatesan, Siddharth ; Wesley, Tim ; Zhang, Qirui ; Wang, Jingcheng ; Choo, Kyojin D. ; Liu, Shiyu ; Liu, Bowen ; Li, Ziyun ; Gong, Luyao ; Zhong, Hengfei ; Blaauw, David ; Dreslinski, Ronald ; Kim, Hun Seok ; Sylvester, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>CMOS</topic><topic>Deep neural network (DNN)</topic><topic>Energy consumption</topic><topic>energy-efficient processor</topic><topic>Engines</topic><topic>event recognition</topic><topic>Face recognition</topic><topic>Image coding</topic><topic>Image compression</topic><topic>image signal processor (ISP)</topic><topic>Image transmission</topic><topic>Imaging</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Power management</topic><topic>Random access memory</topic><topic>Signal processing</topic><topic>Streaming media</topic><topic>Transform coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Hyochan</creatorcontrib><creatorcontrib>Schiferl, Sam</creatorcontrib><creatorcontrib>Venkatesan, Siddharth</creatorcontrib><creatorcontrib>Wesley, Tim</creatorcontrib><creatorcontrib>Zhang, Qirui</creatorcontrib><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Choo, Kyojin D.</creatorcontrib><creatorcontrib>Liu, Shiyu</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Li, Ziyun</creatorcontrib><creatorcontrib>Gong, Luyao</creatorcontrib><creatorcontrib>Zhong, Hengfei</creatorcontrib><creatorcontrib>Blaauw, David</creatorcontrib><creatorcontrib>Dreslinski, Ronald</creatorcontrib><creatorcontrib>Kim, Hun Seok</creatorcontrib><creatorcontrib>Sylvester, Dennis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Hyochan</au><au>Schiferl, Sam</au><au>Venkatesan, Siddharth</au><au>Wesley, Tim</au><au>Zhang, Qirui</au><au>Wang, Jingcheng</au><au>Choo, Kyojin D.</au><au>Liu, Shiyu</au><au>Liu, Bowen</au><au>Li, Ziyun</au><au>Gong, Luyao</au><au>Zhong, Hengfei</au><au>Blaauw, David</au><au>Dreslinski, Ronald</au><au>Kim, Hun Seok</au><au>Sylvester, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>56</volume><issue>4</issue><spage>1071</spage><epage>1081</epage><pages>1071-1081</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[We propose an ultra-low-power (ULP) image signal processor (ISP) that performs on-the-fly in-processing frame compression/decompression and hierarchical event recognition to exploit the temporal and spatial sparsity in an image sequence. This approach reduces energy consumption spent processing and transmitting unimportant image data to achieve a 16<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> imaging system energy gain in an intruder detection scenario. The ISP was fabricated in 40-nm CMOS and consumes only 170 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 5 frames/s for neural network-based intruder detection and 192<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> compressed image recording.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2020.3041858</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6744-7075</orcidid><orcidid>https://orcid.org/0000-0001-8113-3558</orcidid><orcidid>https://orcid.org/0000-0001-5831-9063</orcidid><orcidid>https://orcid.org/0000-0002-6322-025X</orcidid><orcidid>https://orcid.org/0000-0001-6070-6310</orcidid><orcidid>https://orcid.org/0000-0001-6046-6599</orcidid><orcidid>https://orcid.org/0000-0001-8119-094X</orcidid><orcidid>https://orcid.org/0000-0003-2598-0458</orcidid><orcidid>https://orcid.org/0000-0002-6658-5502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2021-04, Vol.56 (4), p.1071-1081
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_2506473324
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
CMOS
Deep neural network (DNN)
Energy consumption
energy-efficient processor
Engines
event recognition
Face recognition
Image coding
Image compression
image signal processor (ISP)
Image transmission
Imaging
Microprocessors
Neural networks
Object recognition
Power management
Random access memory
Signal processing
Streaming media
Transform coding
title An Ultra-Low-Power Image Signal Processor for Hierarchical Image Recognition With Deep Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultra-Low-Power%20Image%20Signal%20Processor%20for%20Hierarchical%20Image%20Recognition%20With%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=An,%20Hyochan&rft.date=2021-04-01&rft.volume=56&rft.issue=4&rft.spage=1071&rft.epage=1081&rft.pages=1071-1081&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2020.3041858&rft_dat=%3Cproquest_ieee_%3E2506473324%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-97b3b1a4cae2160ee482e20756405f16df85b13936900d70403ee893e5ab11583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2506473324&rft_id=info:pmid/&rft_ieee_id=9293122&rfr_iscdi=true