Loading…
Reducing the Number of Control Actions in the Discrete Reactive Optimal Power Flow
This paper proposes a new formulation for the Discrete Reactive Optimal Power Flow problem (DROPF) that aims at reducing the number of control actions of the problem. For such a purpose, additional constraints are introduced in the classical model to the DROPF problem so as to represent specific beh...
Saved in:
Published in: | Revista IEEE América Latina 2020-10, Vol.18 (10), p.1666-1674 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a new formulation for the Discrete Reactive Optimal Power Flow problem (DROPF) that aims at reducing the number of control actions of the problem. For such a purpose, additional constraints are introduced in the classical model to the DROPF problem so as to represent specific behaviors of voltage control devices in the electrical system. These behaviors involve the actuation of a control device only when the voltage magnitude limit of the bus controlled by such device is effectively reached. The proposed DROPF model is solved by the branch-and-bound method implemented in the free solver BONMIN. Numerical tests were performed using the IEEE 14, 30 and 118 bus electrical systems and demonstrated the efficiency of the proposed model. The results are compared with the ones obtained by a classical DROPF. |
---|---|
ISSN: | 1548-0992 1548-0992 |
DOI: | 10.1109/TLA.2020.9387636 |