Loading…

Unbuttoning the impact of N501Y mutant RBD on viral entry mechanism: A computational insight

Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an i...

Full description

Saved in:
Bibliographic Details
Published in:bioRxiv 2021-01
Main Authors: Sharma, Tanuj, Mohammad Hassan Baig, Rahim, Moniba, Dong, Jae June, Jae-Yong, Cho
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an important structural protein playing a key role in the viral entry. This protein is responsible for the receptor recognition and cell membrane fusion process. The recent reports of the appearance and spread of new SARS-CoV-2 strain has raised alarms. It was reported that this new variant containing the prominent active site mutation in the RBD (N501Y) was rapidly spreading within the population. The reported N501Y mutation within the spike’s essential part, known as the ‘receptor-binding domain’ has raised several questions. Here in this study we have tried to explore the effect of N501Y mutation within the spike protein using several in silico approaches Competing Interest Statement The authors have declared no competing interest.
DOI:10.1101/2020.12.30.424906