Loading…

Almost Periodic Solutions of Differential Equations

We construct the Favard–Amerio theory for almost periodic differential equations in Banach spaces without using the ℋ -classes of these equations. For linear equations, we present the first examples of almost periodic operators that have no analogs in the classical Favard–Amerio theory.

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-04, Vol.254 (2), p.287-304
Main Author: Slyusarchuk, V. Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743
cites cdi_FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743
container_end_page 304
container_issue 2
container_start_page 287
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 254
creator Slyusarchuk, V. Yu
description We construct the Favard–Amerio theory for almost periodic differential equations in Banach spaces without using the ℋ -classes of these equations. For linear equations, we present the first examples of almost periodic operators that have no analogs in the classical Favard–Amerio theory.
doi_str_mv 10.1007/s10958-021-05305-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2506749119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506749119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkayd7LLV-QEFBPYd0k8iW7aZNdg_-e9eu4M3TDMz7vAMPIdcMbhkA3mUGldIUOKOgBChanpAZUyioxkqdjjsgp0KgPCcXOW9hhEotZkQs2l3MffHqUxNdUxdvsR36Jna5iKG4b0LwyXd9Y9tidRjs8XJJzoJts7_6nXPy8bB6Xz7R9cvj83KxpjVHXVKO6HkAdI57JmspaubkRoignbfMORksugqBBV1xbnGjQgDHNUOFoUYp5uRm6t2neBh87s02DqkbXxquoERZMVaNKT6l6hRzTj6YfWp2Nn0ZBuZHjpnkmFGOOcox5QiJCcpjuPv06a_6H-obpYxmdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506749119</pqid></control><display><type>article</type><title>Almost Periodic Solutions of Differential Equations</title><source>Springer Nature</source><creator>Slyusarchuk, V. Yu</creator><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><description>We construct the Favard–Amerio theory for almost periodic differential equations in Banach spaces without using the ℋ -classes of these equations. For linear equations, we present the first examples of almost periodic operators that have no analogs in the classical Favard–Amerio theory.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05305-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banach spaces ; Differential equations ; Linear equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (2), p.287-304</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743</citedby><cites>FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><title>Almost Periodic Solutions of Differential Equations</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We construct the Favard–Amerio theory for almost periodic differential equations in Banach spaces without using the ℋ -classes of these equations. For linear equations, we present the first examples of almost periodic operators that have no analogs in the classical Favard–Amerio theory.</description><subject>Banach spaces</subject><subject>Differential equations</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkayd7LLV-QEFBPYd0k8iW7aZNdg_-e9eu4M3TDMz7vAMPIdcMbhkA3mUGldIUOKOgBChanpAZUyioxkqdjjsgp0KgPCcXOW9hhEotZkQs2l3MffHqUxNdUxdvsR36Jna5iKG4b0LwyXd9Y9tidRjs8XJJzoJts7_6nXPy8bB6Xz7R9cvj83KxpjVHXVKO6HkAdI57JmspaubkRoignbfMORksugqBBV1xbnGjQgDHNUOFoUYp5uRm6t2neBh87s02DqkbXxquoERZMVaNKT6l6hRzTj6YfWp2Nn0ZBuZHjpnkmFGOOcox5QiJCcpjuPv06a_6H-obpYxmdw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Slyusarchuk, V. Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Almost Periodic Solutions of Differential Equations</title><author>Slyusarchuk, V. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach spaces</topic><topic>Differential equations</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slyusarchuk, V. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slyusarchuk, V. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost Periodic Solutions of Differential Equations</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>254</volume><issue>2</issue><spage>287</spage><epage>304</epage><pages>287-304</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We construct the Favard–Amerio theory for almost periodic differential equations in Banach spaces without using the ℋ -classes of these equations. For linear equations, we present the first examples of almost periodic operators that have no analogs in the classical Favard–Amerio theory.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05305-6</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-04, Vol.254 (2), p.287-304
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2506749119
source Springer Nature
subjects Banach spaces
Differential equations
Linear equations
Mathematical analysis
Mathematics
Mathematics and Statistics
title Almost Periodic Solutions of Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20Periodic%20Solutions%20of%20Differential%20Equations&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Slyusarchuk,%20V.%20Yu&rft.date=2021-04-01&rft.volume=254&rft.issue=2&rft.spage=287&rft.epage=304&rft.pages=287-304&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05305-6&rft_dat=%3Cproquest_cross%3E2506749119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2786-277e2f07dd2e14c43c1d4b33f8dea1dd4fa7d9701f8922a7b5ff0d281757fc743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2506749119&rft_id=info:pmid/&rfr_iscdi=true