Loading…
P2PCF: A collaborative filtering based recommender system for peer to peer social networks
The recent privacy incidents reported in major media about global social networks raised real public concerns about centralized architectures. P2P social networks constitute an interesting paradigm to give back users control over their data and relations. While basic social network functionalities s...
Saved in:
Published in: | Journal of high speed networks 2021-01, Vol.27 (1), p.13-31 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent privacy incidents reported in major media about global social networks raised real public concerns about centralized architectures. P2P social networks constitute an interesting paradigm to give back users control over their data and relations. While basic social network functionalities such as commenting, following, sharing, and publishing content are widely available, more advanced features related to information retrieval and recommendation are still challenging. This is due to the absence of a central server that has a complete view of the network. In this paper, we propose a new recommender system called P2PCF. We use collaborative filtering approach to recommend content in P2P social networks. P2PCF enables privacy preserving and tackles the cold start problem for both users and content. Our proposed approach assumes that the rating matrix is distributed within peers, in such a way that each peer only sees interactions made by her friends on her timeline. Recommendations are then computed locally within each peer before they are sent back to the requester. Our evaluations prove the effectiveness of our proposal compared to a centralized scheme in terms of recall and coverage. |
---|---|
ISSN: | 0926-6801 1875-8940 |
DOI: | 10.3233/JHS-210649 |