Loading…
Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector
Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. How...
Saved in:
Published in: | Nano research 2021-06, Vol.14 (6), p.1967-1972 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. However, due to the built-in potential of Gr/Si as a photodetector, the
I
ph
/
I
dark
ratio is often hindered near zero-bias at relatively low illumination intensity. This is a major drawback in self-powered photodetectors. In this study, we have demonstrated a self-powered van der Waals heterostructure photodetector in the visible range using a Gr/hexagonal boron nitride (h-BN)/Si structure and clarified that the thin h-BN insertion can engineer asymmetric carrier transport and avoid interlayer coupling at the interface. The dark current was able to be suppressed by inserting an h-BN insulator layer, while maintaining the photocurrent with minimal decrease at near zero-bias. As a result, the normalized photocurrent-to-dark ratio (NPDR) is improved more than 10
4
times. Also, both
I
ph
/
I
dark
ratio and detectivity, increase by more than 10
4
times at −0.03 V drain voltage. The proposed Gr/h-BN/Si heterostructure is able to contribute to the introduction of next-generation photodetectors and photovoltaic devices based on graphene or silicon. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-020-2866-x |