Loading…

Complexity of shift spaces on semigroups

Let G = S | R A be a semigroup with generating set S and equivalences R A among S determined by a matrix A . This paper investigates the complexity of G -shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2021-03, Vol.53 (2), p.413-434
Main Authors: Ban, Jung-Chao, Chang, Chih-Hung, Huang, Yu-Hsiung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63
cites cdi_FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63
container_end_page 434
container_issue 2
container_start_page 413
container_title Journal of algebraic combinatorics
container_volume 53
creator Ban, Jung-Chao
Chang, Chih-Hung
Huang, Yu-Hsiung
description Let G = S | R A be a semigroup with generating set S and equivalences R A among S determined by a matrix A . This paper investigates the complexity of G -shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the existence of Petersen–Salama entropy of G -shift of finite type ( G -SFT), the calculation of Petersen–Salama entropy of G -SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of Petersen–Salama entropies of G -SFTs on two symbols is addressed, which extends (Ban and Chang in On the topological entropy of subshifts of finite type on free semigroups, 2018. arXiv:1702.04394 ) in which G is a free semigroup.
doi_str_mv 10.1007/s10801-019-00935-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2507709112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507709112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcFN26i7yVN0ixl8AsG3Og6ZNpk7DBtatKC8--NVnDn4vE2594Lh5BLhBsEULcJoQKkgJoCaC4oHpEFCsWoRs2OyQI0E1RXWp-Ss5R2kKkKxYJcr0I37N1nOx6K4Iv03vqxSIOtXSpCXyTXtdsYpiGdkxNv98ld_P4leXu4f1090fXL4_Pqbk1rLvlIS1VZUdV1w5VTQnFpYQONhzwmuXfa5mPC6dICK5n03DfNBsuSy0pa5SVfkqu5d4jhY3JpNLswxT5PGiZAKdCILFNspuoYUorOmyG2nY0Hg2C-jZjZiMlGzI8RgznE51DKcL918a_6n9QXR4JiEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507709112</pqid></control><display><type>article</type><title>Complexity of shift spaces on semigroups</title><source>Springer Nature</source><creator>Ban, Jung-Chao ; Chang, Chih-Hung ; Huang, Yu-Hsiung</creator><creatorcontrib>Ban, Jung-Chao ; Chang, Chih-Hung ; Huang, Yu-Hsiung</creatorcontrib><description>Let G = S | R A be a semigroup with generating set S and equivalences R A among S determined by a matrix A . This paper investigates the complexity of G -shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the existence of Petersen–Salama entropy of G -shift of finite type ( G -SFT), the calculation of Petersen–Salama entropy of G -SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of Petersen–Salama entropies of G -SFTs on two symbols is addressed, which extends (Ban and Chang in On the topological entropy of subshifts of finite type on free semigroups, 2018. arXiv:1702.04394 ) in which G is a free semigroup.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-019-00935-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Complexity ; Computer Science ; Convex and Discrete Geometry ; Entropy ; Equivalence ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2021-03, Vol.53 (2), p.413-434</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63</citedby><cites>FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ban, Jung-Chao</creatorcontrib><creatorcontrib>Chang, Chih-Hung</creatorcontrib><creatorcontrib>Huang, Yu-Hsiung</creatorcontrib><title>Complexity of shift spaces on semigroups</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Let G = S | R A be a semigroup with generating set S and equivalences R A among S determined by a matrix A . This paper investigates the complexity of G -shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the existence of Petersen–Salama entropy of G -shift of finite type ( G -SFT), the calculation of Petersen–Salama entropy of G -SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of Petersen–Salama entropies of G -SFTs on two symbols is addressed, which extends (Ban and Chang in On the topological entropy of subshifts of finite type on free semigroups, 2018. arXiv:1702.04394 ) in which G is a free semigroup.</description><subject>Combinatorics</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcFN26i7yVN0ixl8AsG3Og6ZNpk7DBtatKC8--NVnDn4vE2594Lh5BLhBsEULcJoQKkgJoCaC4oHpEFCsWoRs2OyQI0E1RXWp-Ss5R2kKkKxYJcr0I37N1nOx6K4Iv03vqxSIOtXSpCXyTXtdsYpiGdkxNv98ld_P4leXu4f1090fXL4_Pqbk1rLvlIS1VZUdV1w5VTQnFpYQONhzwmuXfa5mPC6dICK5n03DfNBsuSy0pa5SVfkqu5d4jhY3JpNLswxT5PGiZAKdCILFNspuoYUorOmyG2nY0Hg2C-jZjZiMlGzI8RgznE51DKcL918a_6n9QXR4JiEw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ban, Jung-Chao</creator><creator>Chang, Chih-Hung</creator><creator>Huang, Yu-Hsiung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Complexity of shift spaces on semigroups</title><author>Ban, Jung-Chao ; Chang, Chih-Hung ; Huang, Yu-Hsiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorics</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ban, Jung-Chao</creatorcontrib><creatorcontrib>Chang, Chih-Hung</creatorcontrib><creatorcontrib>Huang, Yu-Hsiung</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ban, Jung-Chao</au><au>Chang, Chih-Hung</au><au>Huang, Yu-Hsiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of shift spaces on semigroups</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>53</volume><issue>2</issue><spage>413</spage><epage>434</epage><pages>413-434</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Let G = S | R A be a semigroup with generating set S and equivalences R A among S determined by a matrix A . This paper investigates the complexity of G -shift spaces by yielding the Petersen–Salama entropies [defined in Petersen and Salama (Theoret Comput Sci 743:64–71, 2018)]. After revealing the existence of Petersen–Salama entropy of G -shift of finite type ( G -SFT), the calculation of Petersen–Salama entropy of G -SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of Petersen–Salama entropies of G -SFTs on two symbols is addressed, which extends (Ban and Chang in On the topological entropy of subshifts of finite type on free semigroups, 2018. arXiv:1702.04394 ) in which G is a free semigroup.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-019-00935-1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2021-03, Vol.53 (2), p.413-434
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2507709112
source Springer Nature
subjects Combinatorics
Complexity
Computer Science
Convex and Discrete Geometry
Entropy
Equivalence
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
title Complexity of shift spaces on semigroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20shift%20spaces%20on%20semigroups&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Ban,%20Jung-Chao&rft.date=2021-03-01&rft.volume=53&rft.issue=2&rft.spage=413&rft.epage=434&rft.pages=413-434&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-019-00935-1&rft_dat=%3Cproquest_cross%3E2507709112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-478a58ccd37e75736a0b0df081563fe9afe925e94a02426f3fddb1443686a7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2507709112&rft_id=info:pmid/&rfr_iscdi=true