Loading…

A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses

Calcineurin B-like protein-interacting protein kinases (CIPKs) are key elements of plant abiotic stress signaling pathways. CIPKs are SOS2 (Salt Overly Sensitive 2)-like proteins (protein kinase S [PKS] proteins) which all contain a putative FISL motif. It seems that the FISL motif is found only in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology 2021-01, Vol.256, p.153331, Article 153331
Main Authors: Ketehouli, Toi, Zhou, Yong-Gang, Dai, Si-Yu, Carther, Kue Foka Idrice, Sun, Da-Qian, Li, Yang, Nguyen, Quoc Viet Hoang, Xu, Hu, Wang, Fa-Wei, Liu, Wei-Can, Li, Xiao-Wei, Li, Hai-Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calcineurin B-like protein-interacting protein kinases (CIPKs) are key elements of plant abiotic stress signaling pathways. CIPKs are SOS2 (Salt Overly Sensitive 2)-like proteins (protein kinase S [PKS] proteins) which all contain a putative FISL motif. It seems that the FISL motif is found only in the SOS2 subfamily of protein kinases. In this study, the full-length cDNA of a soybean CIPK gene (GmPKS4) was isolated and was revealed to have an important role in abiotic stress responses. A qRT-PCR analysis indicated that GmPKS4 expression is upregulated under saline conditions or when exposed to alkali, salt-alkali, drought, or abscisic acid (ABA). A subcellular localization assay revealed the presence of GmPKS4 in the nucleus and cytoplasm. Further studies on the GmPKS4 promoter suggested it affects soybean resistance to various stresses. Transgenic Arabidopsis thaliana and soybean hairy roots overexpressing GmPKS4 had increased proline content as well as high antioxidant enzyme activities but decreased malondialdehyde levels following salt and salt-alkali stress treatments. Additionally, GmPKS4 overexpression activated reactive oxygen species scavenging systems, thereby minimizing damages due to oxidative and osmotic stresses. Moreover, upregulated stress-related gene expression levels were detected in lines overexpressing GmPKS4 under stress conditions. In conclusion, GmPKS4 improves soybean tolerance to salt and salt-alkali stresses. The overexpression of GmPKS4 enhances the scavenging of reactive oxygen species, osmolyte synthesis, and the transcriptional regulation of stress-related genes.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2020.153331