Loading…

PEDOT-supported Pd nanocatalysts – oxidation of formic acid

Palladium (Pd) nanocatalysts are obtained by electroless deposition of Pd on pre-reduced poly(3,4-ethylenedioxythiophene) (PEDOT) layers doped with either polystyrenesulfonate (PSS) or dodecylsulfate (SDS) ions. The PEDOT-supported Pd catalysts are investigated with respect to formic acid (FA) oxida...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2021-04, Vol.374, p.137931, Article 137931
Main Authors: Nakova, A., Ilieva, M., Czibula, C., Teichert, C., Tsakova, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Palladium (Pd) nanocatalysts are obtained by electroless deposition of Pd on pre-reduced poly(3,4-ethylenedioxythiophene) (PEDOT) layers doped with either polystyrenesulfonate (PSS) or dodecylsulfate (SDS) ions. The PEDOT-supported Pd catalysts are investigated with respect to formic acid (FA) oxidation in slightly acidic solution under voltammetric and chronoamperometric conditions. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) studies are carried out before and after exposure to FA. It is established that the dopant used for the synthesis of PEDOT does affect not only the distribution of the Pd nanoparticles on the polymer surface but also the stability of the composites upon electrochemical treatment in the presence of FA. It is found that PEDOT-PSS undergoes structural rearrangement, and significant loss of the Pd catalyst is observed. In comparison, PEDOT-SDS is more resistant to FA exposure since aggregated Pd nanoparticles are providing additional stability of the polymer structure.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2021.137931