Loading…
Tribological Interaction of Plasma-Functionalized CaCO3 Nanoparticles with Zinc and Ashless Dithiophosphate Additives
Surface-modified CaCO 3 nanoparticles, synthesized through plasma-enhanced chemical vapor deposition (PECVD), were employed to improve lubricant additive technology for internal combustion engines via reduction and/or replacement of additives, such as zinc dialkyl dithiophosphate (ZDDP), in engine o...
Saved in:
Published in: | Tribology letters 2021-06, Vol.69 (2), Article 49 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface-modified CaCO
3
nanoparticles, synthesized through plasma-enhanced chemical vapor deposition (PECVD), were employed to improve lubricant additive technology for internal combustion engines via reduction and/or replacement of additives, such as zinc dialkyl dithiophosphate (ZDDP), in engine oil. Various oil formulations were prepared with functionalized CaCO
3
nanoparticles, in combination with ashless dialkyl dithiophosphate (DDP) and ZDDP at low concentrations of phosphorus. Tribological test results indicate synergistic interaction of functionalized CaCO
3
nanoparticles with ZDDP and DDP, providing enhanced friction and wear performance under boundary lubrication. A comparative study of the tribo-surfaces morphology and chemistry was assessed via atomic force microscopy and X-ray absorption near-edge spectroscopy. Improved wear protection by functionalized CaCO
3
BM (borate and methacrylate coated) nanoparticles under boundary lubrication was attributed to the formation of calcium and boron-rich 50–80 nm thick tribofilms on the worn surfaces. XANES results revealed that plasma-functionalized CaCO
3
nanoparticles interact with ZDDP and DDP and participate in tribofilm formation through tribo-chemical reactions and metal cation supply to form stable and wear-resistant tribofilms. These results provide strong support for the potential application of plasma-functionalized CaCO
3
nano-additives to reduce the concentration of harmful P-based additives in automotive lubricants.
Graphical Abstract |
---|---|
ISSN: | 1023-8883 1573-2711 |
DOI: | 10.1007/s11249-021-01423-z |