Loading…
IITK@LCP at SemEval 2021 Task 1: Classification for Lexical Complexity Regression Task
This paper describes our contribution to SemEval 2021 Task 1: Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression task, we show that we can treat it as an aggregation of several classificati...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes our contribution to SemEval 2021 Task 1: Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression task, we show that we can treat it as an aggregation of several classification and regression models. This somewhat counter-intuitive approach achieved an MAE score of 0.0654 for Sub-Task 1 and MAE of 0.0811 on Sub-Task 2. Additionally, we used the concept of weak supervision signals from Gloss-BERT in our work, and it significantly improved the MAE score in Sub-Task 1. |
---|---|
ISSN: | 2331-8422 |