Loading…

Polynomial approximation in weighted Dirichlet spaces

We give an elementary proof of an analogue of Fejér’s theorem in weighted Dirichlet spaces with superharmonic weights. This provides a simple way of seeing that polynomials are dense in such spaces.

Saved in:
Bibliographic Details
Published in:Complex analysis and its synergies 2021-06, Vol.7 (2), Article 11
Main Authors: Mashreghi, Javad, Ransford, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833
cites cdi_FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833
container_end_page
container_issue 2
container_start_page
container_title Complex analysis and its synergies
container_volume 7
creator Mashreghi, Javad
Ransford, Thomas
description We give an elementary proof of an analogue of Fejér’s theorem in weighted Dirichlet spaces with superharmonic weights. This provides a simple way of seeing that polynomials are dense in such spaces.
doi_str_mv 10.1007/s40627-021-00078-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2508970757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508970757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYF-BUiXPAiZsmOaLxV5oEhx24RWmbbpm6tiSdYN-eQJG4cbIt_d6z_Qi5ZHDNAORNzKHgkgJnFNKsqD4hM860pIzD22nqBc-pFIqdk0WMuwRxyYAjzoh47dtj1--9bTM7DKH_9Hs7-r7LfJd9OL_Zjq7O7nzw1bZ1YxYHW7l4Qc4a20a3-K1zsn64Xy-f6Orl8Xl5u6IVl6gpwzq3qKQVHKUuEJWtIXfaAqqyZqh542osStFYnWNZ2rwsCgUaOWNMIc7J1WSb7no_uDiaXX8IXdpouAClJUghE8Unqgp9jME1ZgjpiXA0DMx3QGYKyKSAzE9ARicRTqKY4G7jwp_1P6ovus1mtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508970757</pqid></control><display><type>article</type><title>Polynomial approximation in weighted Dirichlet spaces</title><source>Springer Nature</source><creator>Mashreghi, Javad ; Ransford, Thomas</creator><creatorcontrib>Mashreghi, Javad ; Ransford, Thomas</creatorcontrib><description>We give an elementary proof of an analogue of Fejér’s theorem in weighted Dirichlet spaces with superharmonic weights. This provides a simple way of seeing that polynomials are dense in such spaces.</description><identifier>ISSN: 2524-7581</identifier><identifier>EISSN: 2197-120X</identifier><identifier>DOI: 10.1007/s40627-021-00078-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Analysis ; Complex Analysis: a Renewable Resource for Techniques and Problems in Mathematics ; Dirichlet problem ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Polynomials</subject><ispartof>Complex analysis and its synergies, 2021-06, Vol.7 (2), Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833</citedby><cites>FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mashreghi, Javad</creatorcontrib><creatorcontrib>Ransford, Thomas</creatorcontrib><title>Polynomial approximation in weighted Dirichlet spaces</title><title>Complex analysis and its synergies</title><addtitle>Complex Anal Synerg</addtitle><description>We give an elementary proof of an analogue of Fejér’s theorem in weighted Dirichlet spaces with superharmonic weights. This provides a simple way of seeing that polynomials are dense in such spaces.</description><subject>Algebraic Geometry</subject><subject>Analysis</subject><subject>Complex Analysis: a Renewable Resource for Techniques and Problems in Mathematics</subject><subject>Dirichlet problem</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><issn>2524-7581</issn><issn>2197-120X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEtPYF-BUiXPAiZsmOaLxV5oEhx24RWmbbpm6tiSdYN-eQJG4cbIt_d6z_Qi5ZHDNAORNzKHgkgJnFNKsqD4hM860pIzD22nqBc-pFIqdk0WMuwRxyYAjzoh47dtj1--9bTM7DKH_9Hs7-r7LfJd9OL_Zjq7O7nzw1bZ1YxYHW7l4Qc4a20a3-K1zsn64Xy-f6Orl8Xl5u6IVl6gpwzq3qKQVHKUuEJWtIXfaAqqyZqh542osStFYnWNZ2rwsCgUaOWNMIc7J1WSb7no_uDiaXX8IXdpouAClJUghE8Unqgp9jME1ZgjpiXA0DMx3QGYKyKSAzE9ARicRTqKY4G7jwp_1P6ovus1mtQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Mashreghi, Javad</creator><creator>Ransford, Thomas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Polynomial approximation in weighted Dirichlet spaces</title><author>Mashreghi, Javad ; Ransford, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Analysis</topic><topic>Complex Analysis: a Renewable Resource for Techniques and Problems in Mathematics</topic><topic>Dirichlet problem</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashreghi, Javad</creatorcontrib><creatorcontrib>Ransford, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and its synergies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashreghi, Javad</au><au>Ransford, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial approximation in weighted Dirichlet spaces</atitle><jtitle>Complex analysis and its synergies</jtitle><stitle>Complex Anal Synerg</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><artnum>11</artnum><issn>2524-7581</issn><eissn>2197-120X</eissn><abstract>We give an elementary proof of an analogue of Fejér’s theorem in weighted Dirichlet spaces with superharmonic weights. This provides a simple way of seeing that polynomials are dense in such spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40627-021-00078-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 2524-7581
ispartof Complex analysis and its synergies, 2021-06, Vol.7 (2), Article 11
issn 2524-7581
2197-120X
language eng
recordid cdi_proquest_journals_2508970757
source Springer Nature
subjects Algebraic Geometry
Analysis
Complex Analysis: a Renewable Resource for Techniques and Problems in Mathematics
Dirichlet problem
Dynamical Systems and Ergodic Theory
Functional Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Partial Differential Equations
Polynomials
title Polynomial approximation in weighted Dirichlet spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20approximation%20in%20weighted%20Dirichlet%20spaces&rft.jtitle=Complex%20analysis%20and%20its%20synergies&rft.au=Mashreghi,%20Javad&rft.date=2021-06-01&rft.volume=7&rft.issue=2&rft.artnum=11&rft.issn=2524-7581&rft.eissn=2197-120X&rft_id=info:doi/10.1007/s40627-021-00078-9&rft_dat=%3Cproquest_cross%3E2508970757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2739-13d4a387a523796338ad04e9a038bd1392fed36b5fa943bba4b6680932111833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2508970757&rft_id=info:pmid/&rfr_iscdi=true