Loading…

Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers

ZnO‐SnO2 composite nanofibers with a constant Zn/Sn ratio of 0.4 have been electrospun and calcined at 650°C in ambient air, followed then by heat treatment at 350°C in either air, 5% H2‐95% N2, or 15 ppm H2S‐air atmosphere for comparison of gas‐sensing behaviors. The nanofibers being heat‐treated i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied ceramic technology 2021-05, Vol.18 (3), p.653-660
Main Authors: Wu, Fengyu Y., Tseng, Wenjea J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 660
container_issue 3
container_start_page 653
container_title International journal of applied ceramic technology
container_volume 18
creator Wu, Fengyu Y.
Tseng, Wenjea J.
description ZnO‐SnO2 composite nanofibers with a constant Zn/Sn ratio of 0.4 have been electrospun and calcined at 650°C in ambient air, followed then by heat treatment at 350°C in either air, 5% H2‐95% N2, or 15 ppm H2S‐air atmosphere for comparison of gas‐sensing behaviors. The nanofibers being heat‐treated in the H2S‐air atmosphere display a sensing response more than 25 times than the as‐calcined counterpart, that is, the sensing response increases from 20 to 514 against a model NO2 gas of 10 ppm concentration at a working temperature of 180°C. This appears to be attributable to the formation of sulfate on the nanofiber surface, which resulted in an enriched oxygen vacancy and chemisorbed oxygen near the surface for facilitating the redox reaction toward NO2 gas molecules. The facile heat treatment in the presence of dilute H2S concentration may have opened up an alternative route for enhancing the surface‐sensitive gas‐sensor activity. Morphology, NO2 sensing response, and sensing mechanisms of the ZnO‐SnO2 composites.
doi_str_mv 10.1111/ijac.13714
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2509218929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509218929</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2624-ad5c151ccb3e85ee231703bbda4e21ca217152d39a47ebce825df039a19071643</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKFL7DEOeD1I2mOVVWgqFIPgIS4WI6zKalSJ9iJUG98At_Il-C27GF3djUzKw0h18BuIdZdvTH2FkQG8oSMIJMyySTjpxErmSZK8rdzchHChjEhhUhHpJlXFdqethX9QNPT3se-RRcvjobBV8YiDb0fbD94pMaVdG0CDehC7dZ7GTZR79vQDY6-u9Xv98-zW3Fq223XhrpH6oxrq7pAHy7JWWWagFf_c0xe7-cvs8dkuXpYzKbLZM1TLhNTKgsKrC0EThQiF5AxURSlkcjBGg4ZKF6K3MgMC4sTrsqKxRVylkEqxZjcHH07334OGHq9aQfv4kvNFcs5THKeRxYcWV91gzvd-Xpr_E4D0_so9T5KfYhSL56mswMSf993ax8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509218929</pqid></control><display><type>article</type><title>Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Fengyu Y. ; Tseng, Wenjea J.</creator><creatorcontrib>Wu, Fengyu Y. ; Tseng, Wenjea J.</creatorcontrib><description>ZnO‐SnO2 composite nanofibers with a constant Zn/Sn ratio of 0.4 have been electrospun and calcined at 650°C in ambient air, followed then by heat treatment at 350°C in either air, 5% H2‐95% N2, or 15 ppm H2S‐air atmosphere for comparison of gas‐sensing behaviors. The nanofibers being heat‐treated in the H2S‐air atmosphere display a sensing response more than 25 times than the as‐calcined counterpart, that is, the sensing response increases from 20 to 514 against a model NO2 gas of 10 ppm concentration at a working temperature of 180°C. This appears to be attributable to the formation of sulfate on the nanofiber surface, which resulted in an enriched oxygen vacancy and chemisorbed oxygen near the surface for facilitating the redox reaction toward NO2 gas molecules. The facile heat treatment in the presence of dilute H2S concentration may have opened up an alternative route for enhancing the surface‐sensitive gas‐sensor activity. Morphology, NO2 sensing response, and sensing mechanisms of the ZnO‐SnO2 composites.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13714</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Electrospinning ; gas sensor ; Gas sensors ; H2S ; Heat treatment ; Hydrogen sulfide ; nanofiber ; Nanofibers ; Nitrogen dioxide ; Oxygen enrichment ; Redox reactions ; Roasting ; SnO2 ; Surface structure ; Tin dioxide ; Zinc oxide ; ZnO</subject><ispartof>International journal of applied ceramic technology, 2021-05, Vol.18 (3), p.653-660</ispartof><rights>2021 The American Ceramic Society</rights><rights>Copyright © 2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7307-2740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Fengyu Y.</creatorcontrib><creatorcontrib>Tseng, Wenjea J.</creatorcontrib><title>Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers</title><title>International journal of applied ceramic technology</title><description>ZnO‐SnO2 composite nanofibers with a constant Zn/Sn ratio of 0.4 have been electrospun and calcined at 650°C in ambient air, followed then by heat treatment at 350°C in either air, 5% H2‐95% N2, or 15 ppm H2S‐air atmosphere for comparison of gas‐sensing behaviors. The nanofibers being heat‐treated in the H2S‐air atmosphere display a sensing response more than 25 times than the as‐calcined counterpart, that is, the sensing response increases from 20 to 514 against a model NO2 gas of 10 ppm concentration at a working temperature of 180°C. This appears to be attributable to the formation of sulfate on the nanofiber surface, which resulted in an enriched oxygen vacancy and chemisorbed oxygen near the surface for facilitating the redox reaction toward NO2 gas molecules. The facile heat treatment in the presence of dilute H2S concentration may have opened up an alternative route for enhancing the surface‐sensitive gas‐sensor activity. Morphology, NO2 sensing response, and sensing mechanisms of the ZnO‐SnO2 composites.</description><subject>Electrospinning</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>H2S</subject><subject>Heat treatment</subject><subject>Hydrogen sulfide</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>Nitrogen dioxide</subject><subject>Oxygen enrichment</subject><subject>Redox reactions</subject><subject>Roasting</subject><subject>SnO2</subject><subject>Surface structure</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><subject>ZnO</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKFL7DEOeD1I2mOVVWgqFIPgIS4WI6zKalSJ9iJUG98At_Il-C27GF3djUzKw0h18BuIdZdvTH2FkQG8oSMIJMyySTjpxErmSZK8rdzchHChjEhhUhHpJlXFdqethX9QNPT3se-RRcvjobBV8YiDb0fbD94pMaVdG0CDehC7dZ7GTZR79vQDY6-u9Xv98-zW3Fq223XhrpH6oxrq7pAHy7JWWWagFf_c0xe7-cvs8dkuXpYzKbLZM1TLhNTKgsKrC0EThQiF5AxURSlkcjBGg4ZKF6K3MgMC4sTrsqKxRVylkEqxZjcHH07334OGHq9aQfv4kvNFcs5THKeRxYcWV91gzvd-Xpr_E4D0_so9T5KfYhSL56mswMSf993ax8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wu, Fengyu Y.</creator><creator>Tseng, Wenjea J.</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7307-2740</orcidid></search><sort><creationdate>202105</creationdate><title>Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers</title><author>Wu, Fengyu Y. ; Tseng, Wenjea J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2624-ad5c151ccb3e85ee231703bbda4e21ca217152d39a47ebce825df039a19071643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrospinning</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>H2S</topic><topic>Heat treatment</topic><topic>Hydrogen sulfide</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>Nitrogen dioxide</topic><topic>Oxygen enrichment</topic><topic>Redox reactions</topic><topic>Roasting</topic><topic>SnO2</topic><topic>Surface structure</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fengyu Y.</creatorcontrib><creatorcontrib>Tseng, Wenjea J.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fengyu Y.</au><au>Tseng, Wenjea J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2021-05</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>653</spage><epage>660</epage><pages>653-660</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>ZnO‐SnO2 composite nanofibers with a constant Zn/Sn ratio of 0.4 have been electrospun and calcined at 650°C in ambient air, followed then by heat treatment at 350°C in either air, 5% H2‐95% N2, or 15 ppm H2S‐air atmosphere for comparison of gas‐sensing behaviors. The nanofibers being heat‐treated in the H2S‐air atmosphere display a sensing response more than 25 times than the as‐calcined counterpart, that is, the sensing response increases from 20 to 514 against a model NO2 gas of 10 ppm concentration at a working temperature of 180°C. This appears to be attributable to the formation of sulfate on the nanofiber surface, which resulted in an enriched oxygen vacancy and chemisorbed oxygen near the surface for facilitating the redox reaction toward NO2 gas molecules. The facile heat treatment in the presence of dilute H2S concentration may have opened up an alternative route for enhancing the surface‐sensitive gas‐sensor activity. Morphology, NO2 sensing response, and sensing mechanisms of the ZnO‐SnO2 composites.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13714</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7307-2740</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2021-05, Vol.18 (3), p.653-660
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_2509218929
source Wiley-Blackwell Read & Publish Collection
subjects Electrospinning
gas sensor
Gas sensors
H2S
Heat treatment
Hydrogen sulfide
nanofiber
Nanofibers
Nitrogen dioxide
Oxygen enrichment
Redox reactions
Roasting
SnO2
Surface structure
Tin dioxide
Zinc oxide
ZnO
title Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heat%20treatment%20on%20surface%20structure%20and%20gas%20sensing%20of%20electrospun%20ZnO%E2%80%90SnO2%20composite%20nanofibers&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Wu,%20Fengyu%20Y.&rft.date=2021-05&rft.volume=18&rft.issue=3&rft.spage=653&rft.epage=660&rft.pages=653-660&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13714&rft_dat=%3Cproquest_wiley%3E2509218929%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2624-ad5c151ccb3e85ee231703bbda4e21ca217152d39a47ebce825df039a19071643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509218929&rft_id=info:pmid/&rfr_iscdi=true