Loading…

Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed

Remote sensing has gained attention as a novel source of primary information for estimating river discharge, and the Mass‐conserved Flow Law Inversion (McFLI) approach has successfully estimated river discharge in ungauged basins solely from optical satellite data. However, McFLI currently suffers f...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2021-03, Vol.57 (3), p.n/a
Main Authors: Ishitsuka, Yuta, Gleason, Colin J., Hagemann, Mark W., Beighley, Edward, Allen, George H., Feng, Dongmei, Lin, Peirong, Pan, Ming, Andreadis, Konstantinos, Pavelsky, Tamlin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remote sensing has gained attention as a novel source of primary information for estimating river discharge, and the Mass‐conserved Flow Law Inversion (McFLI) approach has successfully estimated river discharge in ungauged basins solely from optical satellite data. However, McFLI currently suffers from two major drawbacks: (1) existing optical satellites lead to temporally and spatially sparse discharge estimates and (2) because of the assumptions required, McFLI cannot guarantee downstream flow continuity. Hydrological modeling has neither drawback, yet model accuracy is frequently limited by a lack of discharge observations. We therefore combine McFLI and models in a data assimilation framework applicable globally. We establish a daily “ungauged” baseline model for 28,998 reaches of the Missouri river basin forced by recently published global runoff data, which we do not calibrate. We estimate discharge via McFLI using ∼1 million width measurements made from 12,000 Landsat scenes and assimilate McFLI into the model before validating at 403 USGS gauges. Results show that assimilated discharges did not impair already accurate baseline flows and achieved median improvements of 28% normalized root mean square error, 0.50 Nash–Sutcliffe efficiency (NSE), and 0.23 Kling–Gupta efficiency where baseline performance was poor (defined as baseline negative NSE, 225/403 reaches). We ultimately improved flows at 92% of these originally poorly modeled gauges, even though Landsat images only provide McFLI discharges at 1.5% of reaches and 26% of simulated days. Our results suggest that the combination of McFLI and state‐of‐the‐art hydrology models can improve flow estimations in ungauged basins globally. Key Points ∼1 million satellite‐derived river widths are used to estimate river discharge via the BAM algorithm Daily basin‐wide discharge estimation is improved by addition of remote sensing Our approach is a potential direct analog for future SWOT observations
ISSN:0043-1397
1944-7973
DOI:10.1029/2020WR027794