Loading…
Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model
The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiologi...
Saved in:
Published in: | Advanced healthcare materials 2021-04, Vol.10 (7), p.e2001736-n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | e2001736 |
container_title | Advanced healthcare materials |
container_volume | 10 |
creator | Adhikari, Aniruddha Mondal, Susmita Das, Monojit Biswas, Pritam Pal, Uttam Darbar, Soumendra Bhattacharya, Siddhartha Sankar Pal, Debasish Saha‐Dasgupta, Tanusri Das, Anjan Kumar Mallick, Asim Kumar Pal, Samir Kumar |
description | The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc. |
doi_str_mv | 10.1002/adhm.202001736 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509290889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509290889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhq0KVBBw7bGy1AOnpLY3dtbHNKENUoCqgvNq1p4FU68d7CxteAPeuhtCwxFfxpr55hvpJ-QTZ0POmPgK9q4dCiYY4-NCfSCHgmsxEErqvd1_xA7ISc73rH9KclXyj-SgKAqheMkPyfN5MDEtY4KVi4HGhgL95qKJ7bLv1B7pJYT4tG6RukCn6H3nIdFJ6PG_zkJY0bPwMp5CNmCR_sJHTBkznXc9FG5XMZxmunC_kc5cjsli2qh-JjTeBWfA04to0R-T_QZ8xpPXekRuvp9dT-eDxdWP8-lkMTAjydTAIJpRrWwjpBSlAN1Yro1UfAwInJVWorQMsDG25qg0jKG02tZNaYtCMlsckS9b7zLFhw7zqrqPXQr9yUpIpoVmZal7arilTIo5J2yqZXItpHXFWbUJv9qEX-3C7xc-v2q7ukW7w_9H3QN6C_xxHtfv6KrJbH7xJv8HpJ6TZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290889</pqid></control><display><type>article</type><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</creator><creatorcontrib>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</creatorcontrib><description>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202001736</identifier><identifier>PMID: 33326181</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Antioxidants ; Biocompatibility ; Biocompatible Materials ; Cellular communication ; Citric acid ; Enzymes ; functionalized nanoparticles ; Glutathione ; Glutathione peroxidase ; Huntington's disease ; Huntingtons disease ; Hydrogen peroxide ; In vivo methods and tests ; Incompatibility ; Manganese ; Manganese oxides ; Metabolic networks ; nanomedicine ; nano‐enzymes ; Neurodegenerative diseases ; neurodegenerative disorder ; Peroxidase ; Physiology ; preclinical animal studies ; Scavenging ; sensitized nanomaterials ; Toxicity</subject><ispartof>Advanced healthcare materials, 2021-04, Vol.10 (7), p.e2001736-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</citedby><cites>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</cites><orcidid>0000-0001-6470-4099 ; 0000-0001-6943-5828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33326181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhikari, Aniruddha</creatorcontrib><creatorcontrib>Mondal, Susmita</creatorcontrib><creatorcontrib>Das, Monojit</creatorcontrib><creatorcontrib>Biswas, Pritam</creatorcontrib><creatorcontrib>Pal, Uttam</creatorcontrib><creatorcontrib>Darbar, Soumendra</creatorcontrib><creatorcontrib>Bhattacharya, Siddhartha Sankar</creatorcontrib><creatorcontrib>Pal, Debasish</creatorcontrib><creatorcontrib>Saha‐Dasgupta, Tanusri</creatorcontrib><creatorcontrib>Das, Anjan Kumar</creatorcontrib><creatorcontrib>Mallick, Asim Kumar</creatorcontrib><creatorcontrib>Pal, Samir Kumar</creatorcontrib><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Cellular communication</subject><subject>Citric acid</subject><subject>Enzymes</subject><subject>functionalized nanoparticles</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Incompatibility</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Metabolic networks</subject><subject>nanomedicine</subject><subject>nano‐enzymes</subject><subject>Neurodegenerative diseases</subject><subject>neurodegenerative disorder</subject><subject>Peroxidase</subject><subject>Physiology</subject><subject>preclinical animal studies</subject><subject>Scavenging</subject><subject>sensitized nanomaterials</subject><subject>Toxicity</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhq0KVBBw7bGy1AOnpLY3dtbHNKENUoCqgvNq1p4FU68d7CxteAPeuhtCwxFfxpr55hvpJ-QTZ0POmPgK9q4dCiYY4-NCfSCHgmsxEErqvd1_xA7ISc73rH9KclXyj-SgKAqheMkPyfN5MDEtY4KVi4HGhgL95qKJ7bLv1B7pJYT4tG6RukCn6H3nIdFJ6PG_zkJY0bPwMp5CNmCR_sJHTBkznXc9FG5XMZxmunC_kc5cjsli2qh-JjTeBWfA04to0R-T_QZ8xpPXekRuvp9dT-eDxdWP8-lkMTAjydTAIJpRrWwjpBSlAN1Yro1UfAwInJVWorQMsDG25qg0jKG02tZNaYtCMlsckS9b7zLFhw7zqrqPXQr9yUpIpoVmZal7arilTIo5J2yqZXItpHXFWbUJv9qEX-3C7xc-v2q7ukW7w_9H3QN6C_xxHtfv6KrJbH7xJv8HpJ6TZw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Adhikari, Aniruddha</creator><creator>Mondal, Susmita</creator><creator>Das, Monojit</creator><creator>Biswas, Pritam</creator><creator>Pal, Uttam</creator><creator>Darbar, Soumendra</creator><creator>Bhattacharya, Siddhartha Sankar</creator><creator>Pal, Debasish</creator><creator>Saha‐Dasgupta, Tanusri</creator><creator>Das, Anjan Kumar</creator><creator>Mallick, Asim Kumar</creator><creator>Pal, Samir Kumar</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6470-4099</orcidid><orcidid>https://orcid.org/0000-0001-6943-5828</orcidid></search><sort><creationdate>20210401</creationdate><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><author>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Cellular communication</topic><topic>Citric acid</topic><topic>Enzymes</topic><topic>functionalized nanoparticles</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Incompatibility</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Metabolic networks</topic><topic>nanomedicine</topic><topic>nano‐enzymes</topic><topic>Neurodegenerative diseases</topic><topic>neurodegenerative disorder</topic><topic>Peroxidase</topic><topic>Physiology</topic><topic>preclinical animal studies</topic><topic>Scavenging</topic><topic>sensitized nanomaterials</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Aniruddha</creatorcontrib><creatorcontrib>Mondal, Susmita</creatorcontrib><creatorcontrib>Das, Monojit</creatorcontrib><creatorcontrib>Biswas, Pritam</creatorcontrib><creatorcontrib>Pal, Uttam</creatorcontrib><creatorcontrib>Darbar, Soumendra</creatorcontrib><creatorcontrib>Bhattacharya, Siddhartha Sankar</creatorcontrib><creatorcontrib>Pal, Debasish</creatorcontrib><creatorcontrib>Saha‐Dasgupta, Tanusri</creatorcontrib><creatorcontrib>Das, Anjan Kumar</creatorcontrib><creatorcontrib>Mallick, Asim Kumar</creatorcontrib><creatorcontrib>Pal, Samir Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, Aniruddha</au><au>Mondal, Susmita</au><au>Das, Monojit</au><au>Biswas, Pritam</au><au>Pal, Uttam</au><au>Darbar, Soumendra</au><au>Bhattacharya, Siddhartha Sankar</au><au>Pal, Debasish</au><au>Saha‐Dasgupta, Tanusri</au><au>Das, Anjan Kumar</au><au>Mallick, Asim Kumar</au><au>Pal, Samir Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>10</volume><issue>7</issue><spage>e2001736</spage><epage>n/a</epage><pages>e2001736-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33326181</pmid><doi>10.1002/adhm.202001736</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6470-4099</orcidid><orcidid>https://orcid.org/0000-0001-6943-5828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2021-04, Vol.10 (7), p.e2001736-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_journals_2509290889 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal models Animals Antioxidants Biocompatibility Biocompatible Materials Cellular communication Citric acid Enzymes functionalized nanoparticles Glutathione Glutathione peroxidase Huntington's disease Huntingtons disease Hydrogen peroxide In vivo methods and tests Incompatibility Manganese Manganese oxides Metabolic networks nanomedicine nano‐enzymes Neurodegenerative diseases neurodegenerative disorder Peroxidase Physiology preclinical animal studies Scavenging sensitized nanomaterials Toxicity |
title | Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20a%20Biocompatible%20Nanozyme%20in%20Cellular%20Antioxidant%20Enzyme%20Cascade%20Reverses%20Huntington's%20Like%20Disorder%20in%20Preclinical%20Model&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Adhikari,%20Aniruddha&rft.date=2021-04-01&rft.volume=10&rft.issue=7&rft.spage=e2001736&rft.epage=n/a&rft.pages=e2001736-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202001736&rft_dat=%3Cproquest_cross%3E2509290889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509290889&rft_id=info:pmid/33326181&rfr_iscdi=true |