Loading…

Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model

The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiologi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2021-04, Vol.10 (7), p.e2001736-n/a
Main Authors: Adhikari, Aniruddha, Mondal, Susmita, Das, Monojit, Biswas, Pritam, Pal, Uttam, Darbar, Soumendra, Bhattacharya, Siddhartha Sankar, Pal, Debasish, Saha‐Dasgupta, Tanusri, Das, Anjan Kumar, Mallick, Asim Kumar, Pal, Samir Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3
cites cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3
container_end_page n/a
container_issue 7
container_start_page e2001736
container_title Advanced healthcare materials
container_volume 10
creator Adhikari, Aniruddha
Mondal, Susmita
Das, Monojit
Biswas, Pritam
Pal, Uttam
Darbar, Soumendra
Bhattacharya, Siddhartha Sankar
Pal, Debasish
Saha‐Dasgupta, Tanusri
Das, Anjan Kumar
Mallick, Asim Kumar
Pal, Samir Kumar
description The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy. Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.
doi_str_mv 10.1002/adhm.202001736
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509290889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509290889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhq0KVBBw7bGy1AOnpLY3dtbHNKENUoCqgvNq1p4FU68d7CxteAPeuhtCwxFfxpr55hvpJ-QTZ0POmPgK9q4dCiYY4-NCfSCHgmsxEErqvd1_xA7ISc73rH9KclXyj-SgKAqheMkPyfN5MDEtY4KVi4HGhgL95qKJ7bLv1B7pJYT4tG6RukCn6H3nIdFJ6PG_zkJY0bPwMp5CNmCR_sJHTBkznXc9FG5XMZxmunC_kc5cjsli2qh-JjTeBWfA04to0R-T_QZ8xpPXekRuvp9dT-eDxdWP8-lkMTAjydTAIJpRrWwjpBSlAN1Yro1UfAwInJVWorQMsDG25qg0jKG02tZNaYtCMlsckS9b7zLFhw7zqrqPXQr9yUpIpoVmZal7arilTIo5J2yqZXItpHXFWbUJv9qEX-3C7xc-v2q7ukW7w_9H3QN6C_xxHtfv6KrJbH7xJv8HpJ6TZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290889</pqid></control><display><type>article</type><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</creator><creatorcontrib>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</creatorcontrib><description>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy. Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202001736</identifier><identifier>PMID: 33326181</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Antioxidants ; Biocompatibility ; Biocompatible Materials ; Cellular communication ; Citric acid ; Enzymes ; functionalized nanoparticles ; Glutathione ; Glutathione peroxidase ; Huntington's disease ; Huntingtons disease ; Hydrogen peroxide ; In vivo methods and tests ; Incompatibility ; Manganese ; Manganese oxides ; Metabolic networks ; nanomedicine ; nano‐enzymes ; Neurodegenerative diseases ; neurodegenerative disorder ; Peroxidase ; Physiology ; preclinical animal studies ; Scavenging ; sensitized nanomaterials ; Toxicity</subject><ispartof>Advanced healthcare materials, 2021-04, Vol.10 (7), p.e2001736-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</citedby><cites>FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</cites><orcidid>0000-0001-6470-4099 ; 0000-0001-6943-5828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33326181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhikari, Aniruddha</creatorcontrib><creatorcontrib>Mondal, Susmita</creatorcontrib><creatorcontrib>Das, Monojit</creatorcontrib><creatorcontrib>Biswas, Pritam</creatorcontrib><creatorcontrib>Pal, Uttam</creatorcontrib><creatorcontrib>Darbar, Soumendra</creatorcontrib><creatorcontrib>Bhattacharya, Siddhartha Sankar</creatorcontrib><creatorcontrib>Pal, Debasish</creatorcontrib><creatorcontrib>Saha‐Dasgupta, Tanusri</creatorcontrib><creatorcontrib>Das, Anjan Kumar</creatorcontrib><creatorcontrib>Mallick, Asim Kumar</creatorcontrib><creatorcontrib>Pal, Samir Kumar</creatorcontrib><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy. Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Cellular communication</subject><subject>Citric acid</subject><subject>Enzymes</subject><subject>functionalized nanoparticles</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Incompatibility</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Metabolic networks</subject><subject>nanomedicine</subject><subject>nano‐enzymes</subject><subject>Neurodegenerative diseases</subject><subject>neurodegenerative disorder</subject><subject>Peroxidase</subject><subject>Physiology</subject><subject>preclinical animal studies</subject><subject>Scavenging</subject><subject>sensitized nanomaterials</subject><subject>Toxicity</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhq0KVBBw7bGy1AOnpLY3dtbHNKENUoCqgvNq1p4FU68d7CxteAPeuhtCwxFfxpr55hvpJ-QTZ0POmPgK9q4dCiYY4-NCfSCHgmsxEErqvd1_xA7ISc73rH9KclXyj-SgKAqheMkPyfN5MDEtY4KVi4HGhgL95qKJ7bLv1B7pJYT4tG6RukCn6H3nIdFJ6PG_zkJY0bPwMp5CNmCR_sJHTBkznXc9FG5XMZxmunC_kc5cjsli2qh-JjTeBWfA04to0R-T_QZ8xpPXekRuvp9dT-eDxdWP8-lkMTAjydTAIJpRrWwjpBSlAN1Yro1UfAwInJVWorQMsDG25qg0jKG02tZNaYtCMlsckS9b7zLFhw7zqrqPXQr9yUpIpoVmZal7arilTIo5J2yqZXItpHXFWbUJv9qEX-3C7xc-v2q7ukW7w_9H3QN6C_xxHtfv6KrJbH7xJv8HpJ6TZw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Adhikari, Aniruddha</creator><creator>Mondal, Susmita</creator><creator>Das, Monojit</creator><creator>Biswas, Pritam</creator><creator>Pal, Uttam</creator><creator>Darbar, Soumendra</creator><creator>Bhattacharya, Siddhartha Sankar</creator><creator>Pal, Debasish</creator><creator>Saha‐Dasgupta, Tanusri</creator><creator>Das, Anjan Kumar</creator><creator>Mallick, Asim Kumar</creator><creator>Pal, Samir Kumar</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6470-4099</orcidid><orcidid>https://orcid.org/0000-0001-6943-5828</orcidid></search><sort><creationdate>20210401</creationdate><title>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</title><author>Adhikari, Aniruddha ; Mondal, Susmita ; Das, Monojit ; Biswas, Pritam ; Pal, Uttam ; Darbar, Soumendra ; Bhattacharya, Siddhartha Sankar ; Pal, Debasish ; Saha‐Dasgupta, Tanusri ; Das, Anjan Kumar ; Mallick, Asim Kumar ; Pal, Samir Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Cellular communication</topic><topic>Citric acid</topic><topic>Enzymes</topic><topic>functionalized nanoparticles</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Incompatibility</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Metabolic networks</topic><topic>nanomedicine</topic><topic>nano‐enzymes</topic><topic>Neurodegenerative diseases</topic><topic>neurodegenerative disorder</topic><topic>Peroxidase</topic><topic>Physiology</topic><topic>preclinical animal studies</topic><topic>Scavenging</topic><topic>sensitized nanomaterials</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Aniruddha</creatorcontrib><creatorcontrib>Mondal, Susmita</creatorcontrib><creatorcontrib>Das, Monojit</creatorcontrib><creatorcontrib>Biswas, Pritam</creatorcontrib><creatorcontrib>Pal, Uttam</creatorcontrib><creatorcontrib>Darbar, Soumendra</creatorcontrib><creatorcontrib>Bhattacharya, Siddhartha Sankar</creatorcontrib><creatorcontrib>Pal, Debasish</creatorcontrib><creatorcontrib>Saha‐Dasgupta, Tanusri</creatorcontrib><creatorcontrib>Das, Anjan Kumar</creatorcontrib><creatorcontrib>Mallick, Asim Kumar</creatorcontrib><creatorcontrib>Pal, Samir Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, Aniruddha</au><au>Mondal, Susmita</au><au>Das, Monojit</au><au>Biswas, Pritam</au><au>Pal, Uttam</au><au>Darbar, Soumendra</au><au>Bhattacharya, Siddhartha Sankar</au><au>Pal, Debasish</au><au>Saha‐Dasgupta, Tanusri</au><au>Das, Anjan Kumar</au><au>Mallick, Asim Kumar</au><au>Pal, Samir Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>10</volume><issue>7</issue><spage>e2001736</spage><epage>n/a</epage><pages>e2001736-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy. Citrate functionalized Mn3O4 nanoparticles can mimic glutathione peroxidase (GPx) to treat Huntington's like severe neurobehavioral toxicity in experimental animals. The nanoparticles are biocompatible, can efficiently function in the physiological milieu, and possess the unique ability to be incorporated into the cellular enzyme cascade. Successful human trials will impart a new regime in treatment of neurodegenerative disorders like Huntington's, Parkinson's, Alzheimer's, etc.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33326181</pmid><doi>10.1002/adhm.202001736</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6470-4099</orcidid><orcidid>https://orcid.org/0000-0001-6943-5828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2021-04, Vol.10 (7), p.e2001736-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_journals_2509290889
source Wiley-Blackwell Read & Publish Collection
subjects Animal models
Animals
Antioxidants
Biocompatibility
Biocompatible Materials
Cellular communication
Citric acid
Enzymes
functionalized nanoparticles
Glutathione
Glutathione peroxidase
Huntington's disease
Huntingtons disease
Hydrogen peroxide
In vivo methods and tests
Incompatibility
Manganese
Manganese oxides
Metabolic networks
nanomedicine
nano‐enzymes
Neurodegenerative diseases
neurodegenerative disorder
Peroxidase
Physiology
preclinical animal studies
Scavenging
sensitized nanomaterials
Toxicity
title Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20a%20Biocompatible%20Nanozyme%20in%20Cellular%20Antioxidant%20Enzyme%20Cascade%20Reverses%20Huntington's%20Like%20Disorder%20in%20Preclinical%20Model&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Adhikari,%20Aniruddha&rft.date=2021-04-01&rft.volume=10&rft.issue=7&rft.spage=e2001736&rft.epage=n/a&rft.pages=e2001736-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202001736&rft_dat=%3Cproquest_cross%3E2509290889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4506-ceec4b6df255282a9fd19c5617aea108d5e5d0aefcdb1e69a7a8d9dbf8d3350d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509290889&rft_id=info:pmid/33326181&rfr_iscdi=true