Loading…

Different scenarios of shrinking surface soap bubbles

10.1119/10.0002348.1 We discuss a simple experiment investigating the shrinkage of surface soap bubbles sitting on a thin solid plate with a circular orifice located under the apex of the bubble. We identify three different shrinking regimes, the occurrence of which depends on a combination of key p...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2021-03, Vol.89 (3), p.244-252
Main Authors: Clerget, Mattéo, Delvert, Alexandre, Courbin, Laurent, Panizza, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:10.1119/10.0002348.1 We discuss a simple experiment investigating the shrinkage of surface soap bubbles sitting on a thin solid plate with a circular orifice located under the apex of the bubble. We identify three different shrinking regimes, the occurrence of which depends on a combination of key parameters that include the ratio between initial bubble and orifice sizes and physicochemical properties of the fluid system. For low-viscosity liquids and/or large ratios, a bubble remains quasi-hemispherical as shrinking proceeds. In contrast, for liquids with sufficiently large viscosities and/or small geometric ratios, a bubble seeks the shape of a spherical cap while the air inside it escapes through the orifice. In this case, shrinking proceeds with a bubble foot that either recedes over time or does not move for the largest viscosities and/or smallest ratios. We use basic physical arguments to rationalize the three identified regimes and to explain the shrinking dynamics. Specifically, this model which captures observations and measurements is based on Bernoulli's principle for the air flow, volume conservation, and a friction law that accounts for viscous dissipation at the moving bubble foot.
ISSN:0002-9505
1943-2909
DOI:10.1119/10.0002348