Loading…

Chance‐constrained multi‐objective approach for hazardous materials routing and scheduling under demand and service time uncertainty

The transportation of hazardous materials (hazmat) is a challenging problem that often requires a trade‐off between conflicting objectives. In practice, the complexity of the problem is exacerbated due to the lack of sufficient and reliable historical data. In this research, a stochastic multi‐objec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multi-criteria decision analysis 2020-09, Vol.27 (5-6), p.318-336
Main Authors: Moghaddam, Kamran S., Azadian, Farshid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transportation of hazardous materials (hazmat) is a challenging problem that often requires a trade‐off between conflicting objectives. In practice, the complexity of the problem is exacerbated due to the lack of sufficient and reliable historical data. In this research, a stochastic multi‐objective optimization model for hazardous materials (hazmat) vehicle routing and scheduling problem is developed. The goal is to find optimal links and routes to obtain a trade‐off between the safe and fast distribution of hazmat through a transport network under customers' demand and service time uncertainty. We utilized a hybrid game theory based compromise programming to develop a solution algorithm to determine the Pareto‐optimal solutions, which are based on the total travel distance and total risk imposed on the transportation process. Computational results of a realistic numerical case study demonstrate the effectiveness of the proposed model and the solution algorithm in obtaining Pareto‐optimal solutions.
ISSN:1057-9214
1099-1360
DOI:10.1002/mcda.1718