Loading…
Coronal Elemental Abundance: New Results from Soft X-Ray Spectroscopy of the Sun
Elemental abundances in the solar corona are known to be different from those observed in the solar photosphere. The ratio of coronal to photospheric abundance shows a dependence on the first ionization potential (FIP) of the element. We estimate FIP bias from direct measurements of elemental abunda...
Saved in:
Published in: | Solar physics 2020-12, Vol.295 (12), Article 175 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Elemental abundances in the solar corona are known to be different from those observed in the solar photosphere. The ratio of coronal to photospheric abundance shows a dependence on the first ionization potential (FIP) of the element. We estimate FIP bias from direct measurements of elemental abundances from soft X-ray spectra using data from multiple space missions covering a range of solar activity levels. This comprehensive analysis shows clear evidence for a decrease in FIP bias around the maximum intensity of the X-ray flare with coronal abundances briefly tending to photospheric values and a slow recovery as the flare decays. The departure from coronal abundances are larger for the low FIP elements Ca, Fe and Si than for S which have a mid FIP value. These changes in the degree of fractionation might provide inputs to model wave propagation through the chromosphere during flares. |
---|---|
ISSN: | 0038-0938 1573-093X |
DOI: | 10.1007/s11207-020-01738-5 |