Loading…
Exploring the persome: The power of the item in understanding personality structure
We discuss methods of data collection and analysis that emphasize the power of individual personality items for predicting real world criteria (e.g., smoking, exercise, self-rated health). These methods are borrowed by analogy from radio astronomy and human genomics. Synthetic Aperture Personality A...
Saved in:
Published in: | Personality and individual differences 2021-02, Vol.169, p.109905, Article 109905 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss methods of data collection and analysis that emphasize the power of individual personality items for predicting real world criteria (e.g., smoking, exercise, self-rated health). These methods are borrowed by analogy from radio astronomy and human genomics. Synthetic Aperture Personality Assessment (SAPA) applies a matrix sampling procedure that synthesizes very large covariance matrices through the application of massively missing at random data collection. These large covariance matrices can be applied, in turn, in Persome Wide Association Studies (PWAS) to form personality prediction scores for particular criteria. We use two open source data sets (N=4,000 and 126,884 with 135 and 696 items respectively) for demonstrations of both of these procedures. We compare these procedures to the more traditional use of “Big 5” or a larger set of narrower factors (the “little 27”). We argue that there is more information at the item level than is used when aggregating items to form factorially derived scales. |
---|---|
ISSN: | 0191-8869 1873-3549 |
DOI: | 10.1016/j.paid.2020.109905 |