Loading…

A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model

•The system describing the fair price of American put option in subdiffusive Black–Scholes model is derived.•The weighted finite difference method for the class of problems is introduced.•The formula for the optimal choice of discretization parameter is given.•The Longstaff–Schwartz method is ineffi...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2021-05, Vol.96, p.105676, Article 105676
Main Authors: Krzyżanowski, Grzegorz, Magdziarz, Marcin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3
cites cdi_FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3
container_end_page
container_issue
container_start_page 105676
container_title Communications in nonlinear science & numerical simulation
container_volume 96
creator Krzyżanowski, Grzegorz
Magdziarz, Marcin
description •The system describing the fair price of American put option in subdiffusive Black–Scholes model is derived.•The weighted finite difference method for the class of problems is introduced.•The formula for the optimal choice of discretization parameter is given.•The Longstaff–Schwartz method is inefficient for the subdiffusive models. Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black–Scholes (B–S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff–Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.
doi_str_mv 10.1016/j.cnsns.2020.105676
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509634866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420305062</els_id><sourcerecordid>2509634866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3</originalsourceid><addsrcrecordid>eNp9kDtOxDAQhiMEEsvCCWgsUWex87CdgmJZ8ZJWogBqy3YmrEMSL3ayQMcduCEnwSHUVDOamW-k_4uiU4IXBBN6Xi905zu_SHAyTnLK6F40I5zxmCUs2w89xizOGc4OoyPvaxyoIs9m0fsSadtuh172xnayQW9gnjc9lKgynekBlaaqwEGnAbXQb2xYWIeWLTijZYdkVyIlnTPgkN2OPzwyHfKDGsHBmx2gy0bql-_Prwe9sQ141NoSmuPooJKNh5O_Oo-erq8eV7fx-v7mbrVcxzpNSR9DQpguJCm4koRwTYgmGVdJzrjSVNMiyXJCMSk5owqrTOoypRCGWOWQqCqdR2fT362zrwP4XtR2cCGpF0mOC5pmnNJwlU5X2lnvHVRi60wr3YcgWIyKRS1-FYtRsZgUB-pioiAE2AUFwmszqiqNA92L0pp_-R_gmogc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509634866</pqid></control><display><type>article</type><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model</title><source>ScienceDirect Journals</source><creator>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</creator><creatorcontrib>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</creatorcontrib><description>•The system describing the fair price of American put option in subdiffusive Black–Scholes model is derived.•The weighted finite difference method for the class of problems is introduced.•The formula for the optimal choice of discretization parameter is given.•The Longstaff–Schwartz method is inefficient for the subdiffusive models. Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black–Scholes (B–S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff–Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105676</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; American option numerical evaluation ; Diffusion ; Diffusion barriers ; Finite difference method ; Finite element analysis ; Fluid dynamics ; Mathematical analysis ; Physics ; Schwartz method ; Subdiffusion ; Time fractional Black–Scholes model ; Weighted finite difference method</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-05, Vol.96, p.105676, Article 105676</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3</citedby><cites>FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krzyżanowski, Grzegorz</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•The system describing the fair price of American put option in subdiffusive Black–Scholes model is derived.•The weighted finite difference method for the class of problems is introduced.•The formula for the optimal choice of discretization parameter is given.•The Longstaff–Schwartz method is inefficient for the subdiffusive models. Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black–Scholes (B–S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff–Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</description><subject>Algorithms</subject><subject>American option numerical evaluation</subject><subject>Diffusion</subject><subject>Diffusion barriers</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Schwartz method</subject><subject>Subdiffusion</subject><subject>Time fractional Black–Scholes model</subject><subject>Weighted finite difference method</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOxDAQhiMEEsvCCWgsUWex87CdgmJZ8ZJWogBqy3YmrEMSL3ayQMcduCEnwSHUVDOamW-k_4uiU4IXBBN6Xi905zu_SHAyTnLK6F40I5zxmCUs2w89xizOGc4OoyPvaxyoIs9m0fsSadtuh172xnayQW9gnjc9lKgynekBlaaqwEGnAbXQb2xYWIeWLTijZYdkVyIlnTPgkN2OPzwyHfKDGsHBmx2gy0bql-_Prwe9sQ141NoSmuPooJKNh5O_Oo-erq8eV7fx-v7mbrVcxzpNSR9DQpguJCm4koRwTYgmGVdJzrjSVNMiyXJCMSk5owqrTOoypRCGWOWQqCqdR2fT362zrwP4XtR2cCGpF0mOC5pmnNJwlU5X2lnvHVRi60wr3YcgWIyKRS1-FYtRsZgUB-pioiAE2AUFwmszqiqNA92L0pp_-R_gmogc</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Krzyżanowski, Grzegorz</creator><creator>Magdziarz, Marcin</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202105</creationdate><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model</title><author>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>American option numerical evaluation</topic><topic>Diffusion</topic><topic>Diffusion barriers</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Schwartz method</topic><topic>Subdiffusion</topic><topic>Time fractional Black–Scholes model</topic><topic>Weighted finite difference method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzyżanowski, Grzegorz</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzyżanowski, Grzegorz</au><au>Magdziarz, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-05</date><risdate>2021</risdate><volume>96</volume><spage>105676</spage><pages>105676-</pages><artnum>105676</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The system describing the fair price of American put option in subdiffusive Black–Scholes model is derived.•The weighted finite difference method for the class of problems is introduced.•The formula for the optimal choice of discretization parameter is given.•The Longstaff–Schwartz method is inefficient for the subdiffusive models. Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black–Scholes (B–S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff–Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105676</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-05, Vol.96, p.105676, Article 105676
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2509634866
source ScienceDirect Journals
subjects Algorithms
American option numerical evaluation
Diffusion
Diffusion barriers
Finite difference method
Finite element analysis
Fluid dynamics
Mathematical analysis
Physics
Schwartz method
Subdiffusion
Time fractional Black–Scholes model
Weighted finite difference method
title A computational weighted finite difference method for American and barrier options in subdiffusive Black–Scholes model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20weighted%20finite%20difference%20method%20for%20American%20and%20barrier%20options%20in%20subdiffusive%20Black%E2%80%93Scholes%20model&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Krzy%C5%BCanowski,%20Grzegorz&rft.date=2021-05&rft.volume=96&rft.spage=105676&rft.pages=105676-&rft.artnum=105676&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105676&rft_dat=%3Cproquest_cross%3E2509634866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-e217c9a198ba118c11c148b2578bc6c692451601d876b0b4acd36e2450b5e2bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509634866&rft_id=info:pmid/&rfr_iscdi=true