Loading…
Assessment of physical parameterization schemes in WRF over national capital region of India
Increase in the extreme weather events around the world has necessitated application of numerical weather prediction (NWP) models to forecast these events and minimize consequences. Application of NWP models requires appropriate selection of physics parameterization options for close representation...
Saved in:
Published in: | Meteorology and atmospheric physics 2021-04, Vol.133 (2), p.399-418 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93 |
container_end_page | 418 |
container_issue | 2 |
container_start_page | 399 |
container_title | Meteorology and atmospheric physics |
container_volume | 133 |
creator | Gunwani, Preeti Sati, Ankur Prabhat Mohan, Manju Gupta, Medhavi |
description | Increase in the extreme weather events around the world has necessitated application of numerical weather prediction (NWP) models to forecast these events and minimize consequences. Application of NWP models requires appropriate selection of physics parameterization options for close representation of atmospheric processes. In this study, the WRF model performance was evaluated for varying physical parameterization of surface processes in simulating meteorology with respect to varying (i) shortwave and longwave radiation schemes, (ii) planetary boundary layer (PBL) and corresponding surface layer (SL) schemes over Delhi NCR. A total of 11 simulation sets were curated with 7 PBL schemes (ACM2, GBM, UW, MYJ, SH, TEMF and BouLac), 4 surface layer schemes (Pleim-Xiu, Revised MM5, Eta and TEMF), 3 shortwave radiation schemes (Dudhia, New Goddard and RRTMG), 3 longwave radiation schemes (RRTM, New Goddard and RRTMG) and 2 land surface models (LSM) (Pleim-Xiu and Noah). Sensitivity experiments are performed at a fine resolution (1 km) with updated LULC input. Based on the sensitivity analysis, it is inferred that the simulation set which works best for the region is TEMF PBL, TEMF SL, Dudhia shortwave radiation, RRTM longwave radiation and Noah LSM schemes. The TEMF PBL scheme is designed as hybrid (local–nonlocal) scheme and thereby, with consideration of both local and nonlocal viewpoints it is noted that the near-surface meteorological parameters are depicted with greater accuracy. To further address the model biases it is important to refine the physical parameterizations schemes in the WRF model or using different bias correction and data assimilation techniques. |
doi_str_mv | 10.1007/s00703-020-00757-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2509914853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509914853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSZySSTZSk-CgVBFDdCSGbutFM6D3OnwvjrTVvBnZv74H7ncDmEXAt-KzjXdxgLTxlPOItTptl4QiZCpoplXGWnZMKF1kwbLc7JBeKGx10lYkI-ZoiA2EA70K6i_XrEunBb2rvgGhgg1N9uqLuWYrGGBpDWLX1_eaDdFwTaHk6RLlxfD7EHWO3ZaLRoy9pdkrPKbRGufvuUvD3cv86f2PL5cTGfLVmRCjOwpDS-0tpXXqqi0CrNpMwcSO3yBLyrXJlLBdx7KJXjRqmkMt7EM_c5l2DSKbk5-vah-9wBDnbT7UJ8DG2ScWOEzLM0UsmRKkKHGKCyfagbF0YruN2naI8p2piiPaRoxyhKjyKMcLuC8Gf9j-oHsQl29g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509914853</pqid></control><display><type>article</type><title>Assessment of physical parameterization schemes in WRF over national capital region of India</title><source>Springer Link</source><creator>Gunwani, Preeti ; Sati, Ankur Prabhat ; Mohan, Manju ; Gupta, Medhavi</creator><creatorcontrib>Gunwani, Preeti ; Sati, Ankur Prabhat ; Mohan, Manju ; Gupta, Medhavi</creatorcontrib><description>Increase in the extreme weather events around the world has necessitated application of numerical weather prediction (NWP) models to forecast these events and minimize consequences. Application of NWP models requires appropriate selection of physics parameterization options for close representation of atmospheric processes. In this study, the WRF model performance was evaluated for varying physical parameterization of surface processes in simulating meteorology with respect to varying (i) shortwave and longwave radiation schemes, (ii) planetary boundary layer (PBL) and corresponding surface layer (SL) schemes over Delhi NCR. A total of 11 simulation sets were curated with 7 PBL schemes (ACM2, GBM, UW, MYJ, SH, TEMF and BouLac), 4 surface layer schemes (Pleim-Xiu, Revised MM5, Eta and TEMF), 3 shortwave radiation schemes (Dudhia, New Goddard and RRTMG), 3 longwave radiation schemes (RRTM, New Goddard and RRTMG) and 2 land surface models (LSM) (Pleim-Xiu and Noah). Sensitivity experiments are performed at a fine resolution (1 km) with updated LULC input. Based on the sensitivity analysis, it is inferred that the simulation set which works best for the region is TEMF PBL, TEMF SL, Dudhia shortwave radiation, RRTM longwave radiation and Noah LSM schemes. The TEMF PBL scheme is designed as hybrid (local–nonlocal) scheme and thereby, with consideration of both local and nonlocal viewpoints it is noted that the near-surface meteorological parameters are depicted with greater accuracy. To further address the model biases it is important to refine the physical parameterizations schemes in the WRF model or using different bias correction and data assimilation techniques.</description><identifier>ISSN: 0177-7971</identifier><identifier>EISSN: 1436-5065</identifier><identifier>DOI: 10.1007/s00703-020-00757-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aquatic Pollution ; Atmospheric models ; Atmospheric processes ; Atmospheric Sciences ; Boundary layers ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Land surface models ; Long wave radiation ; Math. Appl. in Environmental Science ; Meteorological parameters ; Meteorological satellites ; Meteorology ; Model accuracy ; Numerical weather forecasting ; Original Paper ; Parameterization ; Physics ; Planetary boundary layer ; Radiation ; Sensitivity analysis ; Short wave radiation ; Simulation ; Surface boundary layer ; Surface layers ; Terrestrial Pollution ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather forecasting</subject><ispartof>Meteorology and atmospheric physics, 2021-04, Vol.133 (2), p.399-418</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93</citedby><cites>FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93</cites><orcidid>0000-0003-0546-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gunwani, Preeti</creatorcontrib><creatorcontrib>Sati, Ankur Prabhat</creatorcontrib><creatorcontrib>Mohan, Manju</creatorcontrib><creatorcontrib>Gupta, Medhavi</creatorcontrib><title>Assessment of physical parameterization schemes in WRF over national capital region of India</title><title>Meteorology and atmospheric physics</title><addtitle>Meteorol Atmos Phys</addtitle><description>Increase in the extreme weather events around the world has necessitated application of numerical weather prediction (NWP) models to forecast these events and minimize consequences. Application of NWP models requires appropriate selection of physics parameterization options for close representation of atmospheric processes. In this study, the WRF model performance was evaluated for varying physical parameterization of surface processes in simulating meteorology with respect to varying (i) shortwave and longwave radiation schemes, (ii) planetary boundary layer (PBL) and corresponding surface layer (SL) schemes over Delhi NCR. A total of 11 simulation sets were curated with 7 PBL schemes (ACM2, GBM, UW, MYJ, SH, TEMF and BouLac), 4 surface layer schemes (Pleim-Xiu, Revised MM5, Eta and TEMF), 3 shortwave radiation schemes (Dudhia, New Goddard and RRTMG), 3 longwave radiation schemes (RRTM, New Goddard and RRTMG) and 2 land surface models (LSM) (Pleim-Xiu and Noah). Sensitivity experiments are performed at a fine resolution (1 km) with updated LULC input. Based on the sensitivity analysis, it is inferred that the simulation set which works best for the region is TEMF PBL, TEMF SL, Dudhia shortwave radiation, RRTM longwave radiation and Noah LSM schemes. The TEMF PBL scheme is designed as hybrid (local–nonlocal) scheme and thereby, with consideration of both local and nonlocal viewpoints it is noted that the near-surface meteorological parameters are depicted with greater accuracy. To further address the model biases it is important to refine the physical parameterizations schemes in the WRF model or using different bias correction and data assimilation techniques.</description><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Atmospheric processes</subject><subject>Atmospheric Sciences</subject><subject>Boundary layers</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Land surface models</subject><subject>Long wave radiation</subject><subject>Math. Appl. in Environmental Science</subject><subject>Meteorological parameters</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Model accuracy</subject><subject>Numerical weather forecasting</subject><subject>Original Paper</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Planetary boundary layer</subject><subject>Radiation</subject><subject>Sensitivity analysis</subject><subject>Short wave radiation</subject><subject>Simulation</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Terrestrial Pollution</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather forecasting</subject><issn>0177-7971</issn><issn>1436-5065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTSZySSTZSk-CgVBFDdCSGbutFM6D3OnwvjrTVvBnZv74H7ncDmEXAt-KzjXdxgLTxlPOItTptl4QiZCpoplXGWnZMKF1kwbLc7JBeKGx10lYkI-ZoiA2EA70K6i_XrEunBb2rvgGhgg1N9uqLuWYrGGBpDWLX1_eaDdFwTaHk6RLlxfD7EHWO3ZaLRoy9pdkrPKbRGufvuUvD3cv86f2PL5cTGfLVmRCjOwpDS-0tpXXqqi0CrNpMwcSO3yBLyrXJlLBdx7KJXjRqmkMt7EM_c5l2DSKbk5-vah-9wBDnbT7UJ8DG2ScWOEzLM0UsmRKkKHGKCyfagbF0YruN2naI8p2piiPaRoxyhKjyKMcLuC8Gf9j-oHsQl29g</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gunwani, Preeti</creator><creator>Sati, Ankur Prabhat</creator><creator>Mohan, Manju</creator><creator>Gupta, Medhavi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0546-646X</orcidid></search><sort><creationdate>20210401</creationdate><title>Assessment of physical parameterization schemes in WRF over national capital region of India</title><author>Gunwani, Preeti ; Sati, Ankur Prabhat ; Mohan, Manju ; Gupta, Medhavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Atmospheric processes</topic><topic>Atmospheric Sciences</topic><topic>Boundary layers</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Land surface models</topic><topic>Long wave radiation</topic><topic>Math. Appl. in Environmental Science</topic><topic>Meteorological parameters</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Model accuracy</topic><topic>Numerical weather forecasting</topic><topic>Original Paper</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Planetary boundary layer</topic><topic>Radiation</topic><topic>Sensitivity analysis</topic><topic>Short wave radiation</topic><topic>Simulation</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Terrestrial Pollution</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunwani, Preeti</creatorcontrib><creatorcontrib>Sati, Ankur Prabhat</creatorcontrib><creatorcontrib>Mohan, Manju</creatorcontrib><creatorcontrib>Gupta, Medhavi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Meteorology and atmospheric physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunwani, Preeti</au><au>Sati, Ankur Prabhat</au><au>Mohan, Manju</au><au>Gupta, Medhavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of physical parameterization schemes in WRF over national capital region of India</atitle><jtitle>Meteorology and atmospheric physics</jtitle><stitle>Meteorol Atmos Phys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>133</volume><issue>2</issue><spage>399</spage><epage>418</epage><pages>399-418</pages><issn>0177-7971</issn><eissn>1436-5065</eissn><abstract>Increase in the extreme weather events around the world has necessitated application of numerical weather prediction (NWP) models to forecast these events and minimize consequences. Application of NWP models requires appropriate selection of physics parameterization options for close representation of atmospheric processes. In this study, the WRF model performance was evaluated for varying physical parameterization of surface processes in simulating meteorology with respect to varying (i) shortwave and longwave radiation schemes, (ii) planetary boundary layer (PBL) and corresponding surface layer (SL) schemes over Delhi NCR. A total of 11 simulation sets were curated with 7 PBL schemes (ACM2, GBM, UW, MYJ, SH, TEMF and BouLac), 4 surface layer schemes (Pleim-Xiu, Revised MM5, Eta and TEMF), 3 shortwave radiation schemes (Dudhia, New Goddard and RRTMG), 3 longwave radiation schemes (RRTM, New Goddard and RRTMG) and 2 land surface models (LSM) (Pleim-Xiu and Noah). Sensitivity experiments are performed at a fine resolution (1 km) with updated LULC input. Based on the sensitivity analysis, it is inferred that the simulation set which works best for the region is TEMF PBL, TEMF SL, Dudhia shortwave radiation, RRTM longwave radiation and Noah LSM schemes. The TEMF PBL scheme is designed as hybrid (local–nonlocal) scheme and thereby, with consideration of both local and nonlocal viewpoints it is noted that the near-surface meteorological parameters are depicted with greater accuracy. To further address the model biases it is important to refine the physical parameterizations schemes in the WRF model or using different bias correction and data assimilation techniques.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00703-020-00757-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0546-646X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-7971 |
ispartof | Meteorology and atmospheric physics, 2021-04, Vol.133 (2), p.399-418 |
issn | 0177-7971 1436-5065 |
language | eng |
recordid | cdi_proquest_journals_2509914853 |
source | Springer Link |
subjects | Aquatic Pollution Atmospheric models Atmospheric processes Atmospheric Sciences Boundary layers Data assimilation Data collection Earth and Environmental Science Earth Sciences Extreme weather Land surface models Long wave radiation Math. Appl. in Environmental Science Meteorological parameters Meteorological satellites Meteorology Model accuracy Numerical weather forecasting Original Paper Parameterization Physics Planetary boundary layer Radiation Sensitivity analysis Short wave radiation Simulation Surface boundary layer Surface layers Terrestrial Pollution Waste Water Technology Water Management Water Pollution Control Weather forecasting |
title | Assessment of physical parameterization schemes in WRF over national capital region of India |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20physical%20parameterization%20schemes%20in%20WRF%20over%20national%20capital%20region%20of%20India&rft.jtitle=Meteorology%20and%20atmospheric%20physics&rft.au=Gunwani,%20Preeti&rft.date=2021-04-01&rft.volume=133&rft.issue=2&rft.spage=399&rft.epage=418&rft.pages=399-418&rft.issn=0177-7971&rft.eissn=1436-5065&rft_id=info:doi/10.1007/s00703-020-00757-y&rft_dat=%3Cproquest_cross%3E2509914853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2d9bf77bfb46cc7635445ae47a82ebafad846e0bbed6a09662f9b947a0b804e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509914853&rft_id=info:pmid/&rfr_iscdi=true |