Loading…
Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment
This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The f...
Saved in:
Published in: | Optical and quantum electronics 2021-04, Vol.53 (4), Article 201 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 53 |
creator | Rohaizar, Muhd Hatim Sepeai, Suhaila Ker, P. J. Ludin, N. A. Ibrahim, M. A. Sopian, K. Zaidi, Saleem H. |
description | This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency. |
doi_str_mv | 10.1007/s11082-021-02809-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510298175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510298175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_coepfhRKHhR8Bay2Um7Jc2uyS5Y8MebWsGbh2FgeN93Zh5CrjnccoDqLnIOUjAQPJWEmu1PyIwXlWCSV--nZAYZlEzWvD4nFzFuAaDMC5iRr6W3bkJvkPaW2tD7kcYpWJ0GsfNrh2yYXETqdMRA29A5l8a091TTpku6Tjsae6cDNegcbXHEsOs8tnTchH5ab1LObnJ67A4e31L8HDB0O_TjJTmzOoVf_fY5eXt8eF08s9XL03Jxv2JGVDCyMgeb60pD2ZR1jbwps8bITBooreFCa93IjLfGNCJvuJA5ivR63spSykK2eTYnN8fcIfQfE8ZRbfsp-LRSiYKDqBOkIqnEUWVCH2NAq4Z0pg57xUEdKKsjZZUoqx_Kap9M2dEUk9ivMfxF_-P6BuMsgok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510298175</pqid></control><display><type>article</type><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><source>Springer Nature</source><creator>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</creator><creatorcontrib>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</creatorcontrib><description>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-021-02809-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Crystal defects ; Crystallization ; Crystallography ; Drilling ; Efficiency ; Electrical Engineering ; High power lasers ; Infrared radiation ; Laser drilling ; Lasers ; Light scattering ; Light transmission ; Microholes ; Optical Devices ; Optical properties ; Optics ; Photonics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Solar cells</subject><ispartof>Optical and quantum electronics, 2021-04, Vol.53 (4), Article 201</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</cites><orcidid>0000-0003-0615-8231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rohaizar, Muhd Hatim</creatorcontrib><creatorcontrib>Sepeai, Suhaila</creatorcontrib><creatorcontrib>Ker, P. J.</creatorcontrib><creatorcontrib>Ludin, N. A.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Zaidi, Saleem H.</creatorcontrib><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Drilling</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>High power lasers</subject><subject>Infrared radiation</subject><subject>Laser drilling</subject><subject>Lasers</subject><subject>Light scattering</subject><subject>Light transmission</subject><subject>Microholes</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar cells</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_coepfhRKHhR8Bay2Um7Jc2uyS5Y8MebWsGbh2FgeN93Zh5CrjnccoDqLnIOUjAQPJWEmu1PyIwXlWCSV--nZAYZlEzWvD4nFzFuAaDMC5iRr6W3bkJvkPaW2tD7kcYpWJ0GsfNrh2yYXETqdMRA29A5l8a091TTpku6Tjsae6cDNegcbXHEsOs8tnTchH5ab1LObnJ67A4e31L8HDB0O_TjJTmzOoVf_fY5eXt8eF08s9XL03Jxv2JGVDCyMgeb60pD2ZR1jbwps8bITBooreFCa93IjLfGNCJvuJA5ivR63spSykK2eTYnN8fcIfQfE8ZRbfsp-LRSiYKDqBOkIqnEUWVCH2NAq4Z0pg57xUEdKKsjZZUoqx_Kap9M2dEUk9ivMfxF_-P6BuMsgok</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rohaizar, Muhd Hatim</creator><creator>Sepeai, Suhaila</creator><creator>Ker, P. J.</creator><creator>Ludin, N. A.</creator><creator>Ibrahim, M. A.</creator><creator>Sopian, K.</creator><creator>Zaidi, Saleem H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0615-8231</orcidid></search><sort><creationdate>20210401</creationdate><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><author>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Drilling</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>High power lasers</topic><topic>Infrared radiation</topic><topic>Laser drilling</topic><topic>Lasers</topic><topic>Light scattering</topic><topic>Light transmission</topic><topic>Microholes</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohaizar, Muhd Hatim</creatorcontrib><creatorcontrib>Sepeai, Suhaila</creatorcontrib><creatorcontrib>Ker, P. J.</creatorcontrib><creatorcontrib>Ludin, N. A.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Zaidi, Saleem H.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohaizar, Muhd Hatim</au><au>Sepeai, Suhaila</au><au>Ker, P. J.</au><au>Ludin, N. A.</au><au>Ibrahim, M. A.</au><au>Sopian, K.</au><au>Zaidi, Saleem H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>53</volume><issue>4</issue><artnum>201</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-021-02809-y</doi><orcidid>https://orcid.org/0000-0003-0615-8231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2021-04, Vol.53 (4), Article 201 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2510298175 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Crystal defects Crystallization Crystallography Drilling Efficiency Electrical Engineering High power lasers Infrared radiation Laser drilling Lasers Light scattering Light transmission Microholes Optical Devices Optical properties Optics Photonics Photovoltaic cells Physics Physics and Astronomy Solar cells |
title | Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20front%20surface%20single-pulse%20laser%20drilling%20on%20a%20bifacial%20solar%20cell%20determined%20through%20simulation%20and%20experiment&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Rohaizar,%20Muhd%20Hatim&rft.date=2021-04-01&rft.volume=53&rft.issue=4&rft.artnum=201&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-021-02809-y&rft_dat=%3Cproquest_cross%3E2510298175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510298175&rft_id=info:pmid/&rfr_iscdi=true |