Loading…

Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment

This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The f...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2021-04, Vol.53 (4), Article 201
Main Authors: Rohaizar, Muhd Hatim, Sepeai, Suhaila, Ker, P. J., Ludin, N. A., Ibrahim, M. A., Sopian, K., Zaidi, Saleem H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43
container_end_page
container_issue 4
container_start_page
container_title Optical and quantum electronics
container_volume 53
creator Rohaizar, Muhd Hatim
Sepeai, Suhaila
Ker, P. J.
Ludin, N. A.
Ibrahim, M. A.
Sopian, K.
Zaidi, Saleem H.
description This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.
doi_str_mv 10.1007/s11082-021-02809-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510298175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510298175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_coepfhRKHhR8Bay2Um7Jc2uyS5Y8MebWsGbh2FgeN93Zh5CrjnccoDqLnIOUjAQPJWEmu1PyIwXlWCSV--nZAYZlEzWvD4nFzFuAaDMC5iRr6W3bkJvkPaW2tD7kcYpWJ0GsfNrh2yYXETqdMRA29A5l8a091TTpku6Tjsae6cDNegcbXHEsOs8tnTchH5ab1LObnJ67A4e31L8HDB0O_TjJTmzOoVf_fY5eXt8eF08s9XL03Jxv2JGVDCyMgeb60pD2ZR1jbwps8bITBooreFCa93IjLfGNCJvuJA5ivR63spSykK2eTYnN8fcIfQfE8ZRbfsp-LRSiYKDqBOkIqnEUWVCH2NAq4Z0pg57xUEdKKsjZZUoqx_Kap9M2dEUk9ivMfxF_-P6BuMsgok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510298175</pqid></control><display><type>article</type><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><source>Springer Nature</source><creator>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</creator><creatorcontrib>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</creatorcontrib><description>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-021-02809-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Crystal defects ; Crystallization ; Crystallography ; Drilling ; Efficiency ; Electrical Engineering ; High power lasers ; Infrared radiation ; Laser drilling ; Lasers ; Light scattering ; Light transmission ; Microholes ; Optical Devices ; Optical properties ; Optics ; Photonics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Solar cells</subject><ispartof>Optical and quantum electronics, 2021-04, Vol.53 (4), Article 201</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</cites><orcidid>0000-0003-0615-8231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rohaizar, Muhd Hatim</creatorcontrib><creatorcontrib>Sepeai, Suhaila</creatorcontrib><creatorcontrib>Ker, P. J.</creatorcontrib><creatorcontrib>Ludin, N. A.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Zaidi, Saleem H.</creatorcontrib><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Drilling</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>High power lasers</subject><subject>Infrared radiation</subject><subject>Laser drilling</subject><subject>Lasers</subject><subject>Light scattering</subject><subject>Light transmission</subject><subject>Microholes</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar cells</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_coepfhRKHhR8Bay2Um7Jc2uyS5Y8MebWsGbh2FgeN93Zh5CrjnccoDqLnIOUjAQPJWEmu1PyIwXlWCSV--nZAYZlEzWvD4nFzFuAaDMC5iRr6W3bkJvkPaW2tD7kcYpWJ0GsfNrh2yYXETqdMRA29A5l8a091TTpku6Tjsae6cDNegcbXHEsOs8tnTchH5ab1LObnJ67A4e31L8HDB0O_TjJTmzOoVf_fY5eXt8eF08s9XL03Jxv2JGVDCyMgeb60pD2ZR1jbwps8bITBooreFCa93IjLfGNCJvuJA5ivR63spSykK2eTYnN8fcIfQfE8ZRbfsp-LRSiYKDqBOkIqnEUWVCH2NAq4Z0pg57xUEdKKsjZZUoqx_Kap9M2dEUk9ivMfxF_-P6BuMsgok</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rohaizar, Muhd Hatim</creator><creator>Sepeai, Suhaila</creator><creator>Ker, P. J.</creator><creator>Ludin, N. A.</creator><creator>Ibrahim, M. A.</creator><creator>Sopian, K.</creator><creator>Zaidi, Saleem H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0615-8231</orcidid></search><sort><creationdate>20210401</creationdate><title>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</title><author>Rohaizar, Muhd Hatim ; Sepeai, Suhaila ; Ker, P. J. ; Ludin, N. A. ; Ibrahim, M. A. ; Sopian, K. ; Zaidi, Saleem H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Drilling</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>High power lasers</topic><topic>Infrared radiation</topic><topic>Laser drilling</topic><topic>Lasers</topic><topic>Light scattering</topic><topic>Light transmission</topic><topic>Microholes</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohaizar, Muhd Hatim</creatorcontrib><creatorcontrib>Sepeai, Suhaila</creatorcontrib><creatorcontrib>Ker, P. J.</creatorcontrib><creatorcontrib>Ludin, N. A.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Sopian, K.</creatorcontrib><creatorcontrib>Zaidi, Saleem H.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohaizar, Muhd Hatim</au><au>Sepeai, Suhaila</au><au>Ker, P. J.</au><au>Ludin, N. A.</au><au>Ibrahim, M. A.</au><au>Sopian, K.</au><au>Zaidi, Saleem H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>53</volume><issue>4</issue><artnum>201</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This study presents the impact of surface modification on bifacial solar cells through single-pulse drilling to enhance efficiency and optical characterisation. A single-pulse laser operates at a wavelength of 1.06 μm, and the microsecond length is a function of its energy and structure setup. The front surface is drilled with two laser energy settings, namely, 23.5 W and 39.6 W, to create a range of micro-holes with distinct depths, widths and crystallographic defects. The modification of the front laser surface has enhanced current density and effectiveness by capturing light in the crystallisation region and the inner region of the micro-holes. Cell topography shift reduces the recombination of electron/hole on the surface. The rear surface registers efficiency digression because of a crystallographic defect that increases optical losses that boost the recombination of hole/electron. The efficiency of the cell with low-power front surface laser drilling increases 1.38%, but that of the cell with low-power back surface laser drilling drops 2.12%. High-power laser drilling increases 1.46% for the front surface and decreases 1.36% for the back surface. Optical characterisation via infrared transmission shows that light increment at a wavelength of 1100 nm is transmitted through the laser drill’s micro-holes. The different depths and widths of the micro-holes determine the light transmission rate that can travel to the back surface. The growth of holes improves the light-scattering and absorption regions, affecting cell efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-021-02809-y</doi><orcidid>https://orcid.org/0000-0003-0615-8231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2021-04, Vol.53 (4), Article 201
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2510298175
source Springer Nature
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Crystal defects
Crystallization
Crystallography
Drilling
Efficiency
Electrical Engineering
High power lasers
Infrared radiation
Laser drilling
Lasers
Light scattering
Light transmission
Microholes
Optical Devices
Optical properties
Optics
Photonics
Photovoltaic cells
Physics
Physics and Astronomy
Solar cells
title Influence of front surface single-pulse laser drilling on a bifacial solar cell determined through simulation and experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20front%20surface%20single-pulse%20laser%20drilling%20on%20a%20bifacial%20solar%20cell%20determined%20through%20simulation%20and%20experiment&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Rohaizar,%20Muhd%20Hatim&rft.date=2021-04-01&rft.volume=53&rft.issue=4&rft.artnum=201&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-021-02809-y&rft_dat=%3Cproquest_cross%3E2510298175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-640f4a7a06b699e1b63bc838c06fc12aaab831dccb24b1284e21574d868858d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510298175&rft_id=info:pmid/&rfr_iscdi=true