Loading…
Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things
Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Becaus...
Saved in:
Published in: | IEEE transactions on industrial informatics 2021-07, Vol.17 (7), p.4925-4934 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93 |
container_end_page | 4934 |
container_issue | 7 |
container_start_page | 4925 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Chen, Ying Liu, Zhiyong Zhang, Yongchao Wu, Yuan Chen, Xin Zhao, Lian |
description | Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively. |
doi_str_mv | 10.1109/TII.2020.3028963 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2510428656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214878</ieee_id><sourcerecordid>2510428656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt3wcuC59TZr2T3qG3VQIsg9Rw2yaSmNJu4m4L9925J8TQD87wzzBNF9xRmlIJ-2mTZjAGDGQemdMIvognVgsYAEi5DLyWNOQN-Hd14vwPgKXA9iX4XiD35xMbWnSuxRTuQFRpnG7uNX4zHiiyO1rRNGSDfHQJD1saa7YiGEFl3RbNHsqy2SOZd2x-GkCWNJZmtDn5wjdmHdkBncSBdTTbfYe5vo6va7D3enes0-npdbubv8erjLZs_r-JSgBhiBUIWmGgJlRQ6VUJVEnSpa1UIk7JCsUQnGhmVoiyM0FRwqQotDNVQImo-jR7Hvb3rfg7oh3wXvrDhZM4kBcFUIpNAwUiVrvPeYZ33rmmNO-YU8pPfPPjNT37zs98QeRgjDSL-45pRoVLF_wC1N3Yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510428656</pqid></control><display><type>article</type><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</creator><creatorcontrib>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</creatorcontrib><description>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3028963</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Continuity ; Deep learning ; Deep reinforcement learning (DRL) ; Delays ; dynamic resource management ; Dynamic scheduling ; Edge computing ; Heuristic algorithms ; Industrial applications ; Industrial development ; industrial Internet of things (IIoT) ; Internet of Things ; Machine learning ; Markov processes ; Mobile computing ; mobile edge computing (MEC) ; Power control ; Resource allocation ; Resource management ; Servers ; Task analysis ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4925-4934</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</citedby><cites>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</cites><orcidid>0000-0002-5250-7909 ; 0000-0002-0844-0882 ; 0000-0001-6661-9461 ; 0000-0001-6662-7322 ; 0000-0002-1765-0232 ; 0000-0002-5602-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhao, Lian</creatorcontrib><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</description><subject>Algorithms</subject><subject>Continuity</subject><subject>Deep learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Delays</subject><subject>dynamic resource management</subject><subject>Dynamic scheduling</subject><subject>Edge computing</subject><subject>Heuristic algorithms</subject><subject>Industrial applications</subject><subject>Industrial development</subject><subject>industrial Internet of things (IIoT)</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Power control</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWKt3wcuC59TZr2T3qG3VQIsg9Rw2yaSmNJu4m4L9925J8TQD87wzzBNF9xRmlIJ-2mTZjAGDGQemdMIvognVgsYAEi5DLyWNOQN-Hd14vwPgKXA9iX4XiD35xMbWnSuxRTuQFRpnG7uNX4zHiiyO1rRNGSDfHQJD1saa7YiGEFl3RbNHsqy2SOZd2x-GkCWNJZmtDn5wjdmHdkBncSBdTTbfYe5vo6va7D3enes0-npdbubv8erjLZs_r-JSgBhiBUIWmGgJlRQ6VUJVEnSpa1UIk7JCsUQnGhmVoiyM0FRwqQotDNVQImo-jR7Hvb3rfg7oh3wXvrDhZM4kBcFUIpNAwUiVrvPeYZ33rmmNO-YU8pPfPPjNT37zs98QeRgjDSL-45pRoVLF_wC1N3Yr</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Chen, Ying</creator><creator>Liu, Zhiyong</creator><creator>Zhang, Yongchao</creator><creator>Wu, Yuan</creator><creator>Chen, Xin</creator><creator>Zhao, Lian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5250-7909</orcidid><orcidid>https://orcid.org/0000-0002-0844-0882</orcidid><orcidid>https://orcid.org/0000-0001-6661-9461</orcidid><orcidid>https://orcid.org/0000-0001-6662-7322</orcidid><orcidid>https://orcid.org/0000-0002-1765-0232</orcidid><orcidid>https://orcid.org/0000-0002-5602-1738</orcidid></search><sort><creationdate>20210701</creationdate><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><author>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Continuity</topic><topic>Deep learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Delays</topic><topic>dynamic resource management</topic><topic>Dynamic scheduling</topic><topic>Edge computing</topic><topic>Heuristic algorithms</topic><topic>Industrial applications</topic><topic>Industrial development</topic><topic>industrial Internet of things (IIoT)</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Power control</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhao, Lian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying</au><au>Liu, Zhiyong</au><au>Zhang, Yongchao</au><au>Wu, Yuan</au><au>Chen, Xin</au><au>Zhao, Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>4925</spage><epage>4934</epage><pages>4925-4934</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3028963</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5250-7909</orcidid><orcidid>https://orcid.org/0000-0002-0844-0882</orcidid><orcidid>https://orcid.org/0000-0001-6661-9461</orcidid><orcidid>https://orcid.org/0000-0001-6662-7322</orcidid><orcidid>https://orcid.org/0000-0002-1765-0232</orcidid><orcidid>https://orcid.org/0000-0002-5602-1738</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4925-4934 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2510428656 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Continuity Deep learning Deep reinforcement learning (DRL) Delays dynamic resource management Dynamic scheduling Edge computing Heuristic algorithms Industrial applications Industrial development industrial Internet of things (IIoT) Internet of Things Machine learning Markov processes Mobile computing mobile edge computing (MEC) Power control Resource allocation Resource management Servers Task analysis Wireless networks |
title | Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning-Based%20Dynamic%20Resource%20Management%20for%20Mobile%20Edge%20Computing%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Ying&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=4925&rft.epage=4934&rft.pages=4925-4934&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3028963&rft_dat=%3Cproquest_ieee_%3E2510428656%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510428656&rft_id=info:pmid/&rft_ieee_id=9214878&rfr_iscdi=true |