Loading…

Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things

Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Becaus...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2021-07, Vol.17 (7), p.4925-4934
Main Authors: Chen, Ying, Liu, Zhiyong, Zhang, Yongchao, Wu, Yuan, Chen, Xin, Zhao, Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93
cites cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93
container_end_page 4934
container_issue 7
container_start_page 4925
container_title IEEE transactions on industrial informatics
container_volume 17
creator Chen, Ying
Liu, Zhiyong
Zhang, Yongchao
Wu, Yuan
Chen, Xin
Zhao, Lian
description Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.
doi_str_mv 10.1109/TII.2020.3028963
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2510428656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214878</ieee_id><sourcerecordid>2510428656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt3wcuC59TZr2T3qG3VQIsg9Rw2yaSmNJu4m4L9925J8TQD87wzzBNF9xRmlIJ-2mTZjAGDGQemdMIvognVgsYAEi5DLyWNOQN-Hd14vwPgKXA9iX4XiD35xMbWnSuxRTuQFRpnG7uNX4zHiiyO1rRNGSDfHQJD1saa7YiGEFl3RbNHsqy2SOZd2x-GkCWNJZmtDn5wjdmHdkBncSBdTTbfYe5vo6va7D3enes0-npdbubv8erjLZs_r-JSgBhiBUIWmGgJlRQ6VUJVEnSpa1UIk7JCsUQnGhmVoiyM0FRwqQotDNVQImo-jR7Hvb3rfg7oh3wXvrDhZM4kBcFUIpNAwUiVrvPeYZ33rmmNO-YU8pPfPPjNT37zs98QeRgjDSL-45pRoVLF_wC1N3Yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510428656</pqid></control><display><type>article</type><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</creator><creatorcontrib>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</creatorcontrib><description>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3028963</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Continuity ; Deep learning ; Deep reinforcement learning (DRL) ; Delays ; dynamic resource management ; Dynamic scheduling ; Edge computing ; Heuristic algorithms ; Industrial applications ; Industrial development ; industrial Internet of things (IIoT) ; Internet of Things ; Machine learning ; Markov processes ; Mobile computing ; mobile edge computing (MEC) ; Power control ; Resource allocation ; Resource management ; Servers ; Task analysis ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4925-4934</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</citedby><cites>FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</cites><orcidid>0000-0002-5250-7909 ; 0000-0002-0844-0882 ; 0000-0001-6661-9461 ; 0000-0001-6662-7322 ; 0000-0002-1765-0232 ; 0000-0002-5602-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhao, Lian</creatorcontrib><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</description><subject>Algorithms</subject><subject>Continuity</subject><subject>Deep learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Delays</subject><subject>dynamic resource management</subject><subject>Dynamic scheduling</subject><subject>Edge computing</subject><subject>Heuristic algorithms</subject><subject>Industrial applications</subject><subject>Industrial development</subject><subject>industrial Internet of things (IIoT)</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Power control</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWKt3wcuC59TZr2T3qG3VQIsg9Rw2yaSmNJu4m4L9925J8TQD87wzzBNF9xRmlIJ-2mTZjAGDGQemdMIvognVgsYAEi5DLyWNOQN-Hd14vwPgKXA9iX4XiD35xMbWnSuxRTuQFRpnG7uNX4zHiiyO1rRNGSDfHQJD1saa7YiGEFl3RbNHsqy2SOZd2x-GkCWNJZmtDn5wjdmHdkBncSBdTTbfYe5vo6va7D3enes0-npdbubv8erjLZs_r-JSgBhiBUIWmGgJlRQ6VUJVEnSpa1UIk7JCsUQnGhmVoiyM0FRwqQotDNVQImo-jR7Hvb3rfg7oh3wXvrDhZM4kBcFUIpNAwUiVrvPeYZ33rmmNO-YU8pPfPPjNT37zs98QeRgjDSL-45pRoVLF_wC1N3Yr</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Chen, Ying</creator><creator>Liu, Zhiyong</creator><creator>Zhang, Yongchao</creator><creator>Wu, Yuan</creator><creator>Chen, Xin</creator><creator>Zhao, Lian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5250-7909</orcidid><orcidid>https://orcid.org/0000-0002-0844-0882</orcidid><orcidid>https://orcid.org/0000-0001-6661-9461</orcidid><orcidid>https://orcid.org/0000-0001-6662-7322</orcidid><orcidid>https://orcid.org/0000-0002-1765-0232</orcidid><orcidid>https://orcid.org/0000-0002-5602-1738</orcidid></search><sort><creationdate>20210701</creationdate><title>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</title><author>Chen, Ying ; Liu, Zhiyong ; Zhang, Yongchao ; Wu, Yuan ; Chen, Xin ; Zhao, Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Continuity</topic><topic>Deep learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Delays</topic><topic>dynamic resource management</topic><topic>Dynamic scheduling</topic><topic>Edge computing</topic><topic>Heuristic algorithms</topic><topic>Industrial applications</topic><topic>Industrial development</topic><topic>industrial Internet of things (IIoT)</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Power control</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhao, Lian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying</au><au>Liu, Zhiyong</au><au>Zhang, Yongchao</au><au>Wu, Yuan</au><au>Chen, Xin</au><au>Zhao, Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>4925</spage><epage>4934</epage><pages>4925-4934</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Nowadays, driven by the rapid development of smart mobile equipments and 5G network technologies, the application scenarios of Internet of Things (IoT) technology are becoming increasingly widespread. The integration of IoT and industrial manufacturing systems forms the industrial IoT (IIoT). Because of the limitation of resources, such as the computation unit and battery capacity in the IIoT equipments (IIEs), computation-intensive tasks need to be executed in the mobile edge computing (MEC) server. However, the dynamics and continuity of task generation lead to a severe challenge to the management of limited resources in IIoT. In this article, we investigate the dynamic resource management problem of joint power control and computing resource allocation for MEC in IIoT. In order to minimize the long-term average delay of the tasks, the original problem is transformed into a Markov decision process (MDP). Considering the dynamics and continuity of task generation, we propose a deep reinforcement learning-based dynamic resource management (DDRM) algorithm to solve the formulated MDP problem. Our DDRM algorithm exploits the deep deterministic policy gradient and can deal with the high-dimensional continuity of the action and state spaces. Extensive simulation results demonstrate that the DDRM can reduce the long-term average delay of the tasks effectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3028963</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5250-7909</orcidid><orcidid>https://orcid.org/0000-0002-0844-0882</orcidid><orcidid>https://orcid.org/0000-0001-6661-9461</orcidid><orcidid>https://orcid.org/0000-0001-6662-7322</orcidid><orcidid>https://orcid.org/0000-0002-1765-0232</orcidid><orcidid>https://orcid.org/0000-0002-5602-1738</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-07, Vol.17 (7), p.4925-4934
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2510428656
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Continuity
Deep learning
Deep reinforcement learning (DRL)
Delays
dynamic resource management
Dynamic scheduling
Edge computing
Heuristic algorithms
Industrial applications
Industrial development
industrial Internet of things (IIoT)
Internet of Things
Machine learning
Markov processes
Mobile computing
mobile edge computing (MEC)
Power control
Resource allocation
Resource management
Servers
Task analysis
Wireless networks
title Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning-Based%20Dynamic%20Resource%20Management%20for%20Mobile%20Edge%20Computing%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Ying&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=4925&rft.epage=4934&rft.pages=4925-4934&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3028963&rft_dat=%3Cproquest_ieee_%3E2510428656%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-8045be6950d5497848d509c9f8b4a72b826969e2154cba4914358b94a190cee93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510428656&rft_id=info:pmid/&rft_ieee_id=9214878&rfr_iscdi=true