Loading…

Reeb flows without simple global surfaces of section

We construct, for any given positive integer \(n\), Reeb flows on contact integral homology 3-spheres which do not admit global surfaces of section with fewer than \(n\) boundary components. We use a connected sum operation for open books to construct such systems. We prove that this property is sta...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Kim, Juno, Kim, Yonghwan, Otto van Koert
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Juno
Kim, Yonghwan
Otto van Koert
description We construct, for any given positive integer \(n\), Reeb flows on contact integral homology 3-spheres which do not admit global surfaces of section with fewer than \(n\) boundary components. We use a connected sum operation for open books to construct such systems. We prove that this property is stable with respect to \(C^{4+\epsilon}\)-small perturbations of the Hamiltonian given on the symplectization.
doi_str_mv 10.48550/arxiv.2104.03728
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2510490988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510490988</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-c1140819cb8e7944ae136397a231f6e3b05034dcb18b446198321d9b55a3d8083</originalsourceid><addsrcrecordid>eNotj01LAzEUAIMgWGp_gLeA513fy0t2X45S_IKCIL2XJJvVLbGpm13rz7egp7nNMELcINSajYE7N_4M37VC0DVQq_hCLBQRVqyVuhKrUvYAoJpWGUMLod9i9LJP-VTkaZg-8jzJMnweU5TvKXuXZJnH3oVYZO5liWEa8uFaXPYulbj651JsHx-26-dq8_r0sr7fVM4argKiBkYbPMfWau0iUkO2dYqwbyJ5MEC6Cx7Za92gZVLYWW-Mo46BaSlu_7THMX_NsUy7fZ7Hw7m4U-b8Z8Ey0y8fB0Ut</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510490988</pqid></control><display><type>article</type><title>Reeb flows without simple global surfaces of section</title><source>Publicly Available Content (ProQuest)</source><creator>Kim, Juno ; Kim, Yonghwan ; Otto van Koert</creator><creatorcontrib>Kim, Juno ; Kim, Yonghwan ; Otto van Koert</creatorcontrib><description>We construct, for any given positive integer \(n\), Reeb flows on contact integral homology 3-spheres which do not admit global surfaces of section with fewer than \(n\) boundary components. We use a connected sum operation for open books to construct such systems. We prove that this property is stable with respect to \(C^{4+\epsilon}\)-small perturbations of the Hamiltonian given on the symplectization.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2104.03728</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Perturbation</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2510490988?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kim, Juno</creatorcontrib><creatorcontrib>Kim, Yonghwan</creatorcontrib><creatorcontrib>Otto van Koert</creatorcontrib><title>Reeb flows without simple global surfaces of section</title><title>arXiv.org</title><description>We construct, for any given positive integer \(n\), Reeb flows on contact integral homology 3-spheres which do not admit global surfaces of section with fewer than \(n\) boundary components. We use a connected sum operation for open books to construct such systems. We prove that this property is stable with respect to \(C^{4+\epsilon}\)-small perturbations of the Hamiltonian given on the symplectization.</description><subject>Homology</subject><subject>Perturbation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEUAIMgWGp_gLeA513fy0t2X45S_IKCIL2XJJvVLbGpm13rz7egp7nNMELcINSajYE7N_4M37VC0DVQq_hCLBQRVqyVuhKrUvYAoJpWGUMLod9i9LJP-VTkaZg-8jzJMnweU5TvKXuXZJnH3oVYZO5liWEa8uFaXPYulbj651JsHx-26-dq8_r0sr7fVM4argKiBkYbPMfWau0iUkO2dYqwbyJ5MEC6Cx7Za92gZVLYWW-Mo46BaSlu_7THMX_NsUy7fZ7Hw7m4U-b8Z8Ey0y8fB0Ut</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Kim, Juno</creator><creator>Kim, Yonghwan</creator><creator>Otto van Koert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220728</creationdate><title>Reeb flows without simple global surfaces of section</title><author>Kim, Juno ; Kim, Yonghwan ; Otto van Koert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-c1140819cb8e7944ae136397a231f6e3b05034dcb18b446198321d9b55a3d8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Homology</topic><topic>Perturbation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Juno</creatorcontrib><creatorcontrib>Kim, Yonghwan</creatorcontrib><creatorcontrib>Otto van Koert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Juno</au><au>Kim, Yonghwan</au><au>Otto van Koert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reeb flows without simple global surfaces of section</atitle><jtitle>arXiv.org</jtitle><date>2022-07-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We construct, for any given positive integer \(n\), Reeb flows on contact integral homology 3-spheres which do not admit global surfaces of section with fewer than \(n\) boundary components. We use a connected sum operation for open books to construct such systems. We prove that this property is stable with respect to \(C^{4+\epsilon}\)-small perturbations of the Hamiltonian given on the symplectization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2104.03728</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2510490988
source Publicly Available Content (ProQuest)
subjects Homology
Perturbation
title Reeb flows without simple global surfaces of section
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reeb%20flows%20without%20simple%20global%20surfaces%20of%20section&rft.jtitle=arXiv.org&rft.au=Kim,%20Juno&rft.date=2022-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2104.03728&rft_dat=%3Cproquest%3E2510490988%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-c1140819cb8e7944ae136397a231f6e3b05034dcb18b446198321d9b55a3d8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510490988&rft_id=info:pmid/&rfr_iscdi=true