Loading…

Data assimilation for modeling cavitation bubble dynamics

The original or modified Rayleigh Plesset equation (RPE) is often used to analyze cavitation bubble dynamics. The prediction accuracy of these equations is governed by the initial values of the physical parameters. However, even for higher fidelity models, deviations from experimental measurements a...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2021-05, Vol.62 (5), Article 90
Main Authors: Eshraghi, Javad, Ardekani, Arezoo M., Vlachos, Pavlos P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3
cites cdi_FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3
container_end_page
container_issue 5
container_start_page
container_title Experiments in fluids
container_volume 62
creator Eshraghi, Javad
Ardekani, Arezoo M.
Vlachos, Pavlos P.
description The original or modified Rayleigh Plesset equation (RPE) is often used to analyze cavitation bubble dynamics. The prediction accuracy of these equations is governed by the initial values of the physical parameters. However, even for higher fidelity models, deviations from experimental measurements are observed due to the models' underlying assumptions. Here, we present a novel state-observer data assimilation technique designed to fuse time-resolved cavitation bubble diameter measurements with a governing model to yield enhanced spatiotemporal prediction of the cavitation bubble dynamics. This technique places an observer variable in the original or modified RPE and uses a proportional–integral–derivative (PID) control law on the difference between the predicted and measured cavitation bubble diameter. The data-assimilated modeling most accurately estimates the bubble diameter and far-field pressure as the deviation of bubble diameter and far-field pressure predictions from measurements decrease by up to 90% and 60%, respectively. Although the assimilated model is not a substitude for high fidelity models, this technique overcomes the inherent model assumptions, and make the model’s outputs more robust with respect to the physical parameters' initial values. Graphic abstract
doi_str_mv 10.1007/s00348-021-03174-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2510606483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510606483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKsG19GqVPq1FN8w4EbXIa8eMvRjTHqE_ntbW3DnquByzy04jF0iXCNAeZMASFYcBHIgLCWfjtgKJQmOiPKYraAUxGVVyFN2ltIOAPMaqhWr7_WoM51S6EKrxzD0WTPErBucb0O_zaz-DOOSm4Mxrc_c1Osu2HTOThrdJn_xe9fs_fHh7e6Zb16fXu5uN9xSXoy8AueMIy1KKb2QJD3avAHw3lgAbTzV1liRF672hEDC14XxugQCR2gsrdnVsruPw8fBp1HthkPs55dK5AgFFLKiuSWWlo1DStE3ah9Dp-OkENS3IrUoUrMi9aNITTNEC5Tmcr_18W_6H-oLW2Rp5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510606483</pqid></control><display><type>article</type><title>Data assimilation for modeling cavitation bubble dynamics</title><source>Springer Link</source><creator>Eshraghi, Javad ; Ardekani, Arezoo M. ; Vlachos, Pavlos P.</creator><creatorcontrib>Eshraghi, Javad ; Ardekani, Arezoo M. ; Vlachos, Pavlos P.</creatorcontrib><description>The original or modified Rayleigh Plesset equation (RPE) is often used to analyze cavitation bubble dynamics. The prediction accuracy of these equations is governed by the initial values of the physical parameters. However, even for higher fidelity models, deviations from experimental measurements are observed due to the models' underlying assumptions. Here, we present a novel state-observer data assimilation technique designed to fuse time-resolved cavitation bubble diameter measurements with a governing model to yield enhanced spatiotemporal prediction of the cavitation bubble dynamics. This technique places an observer variable in the original or modified RPE and uses a proportional–integral–derivative (PID) control law on the difference between the predicted and measured cavitation bubble diameter. The data-assimilated modeling most accurately estimates the bubble diameter and far-field pressure as the deviation of bubble diameter and far-field pressure predictions from measurements decrease by up to 90% and 60%, respectively. Although the assimilated model is not a substitude for high fidelity models, this technique overcomes the inherent model assumptions, and make the model’s outputs more robust with respect to the physical parameters' initial values. Graphic abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-021-03174-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Cavitation ; Data assimilation ; Deviation ; Diameters ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Mathematical models ; Modelling ; Parameters ; Physical properties ; Proportional integral derivative ; Research Article ; State observers</subject><ispartof>Experiments in fluids, 2021-05, Vol.62 (5), Article 90</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3</citedby><cites>FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3</cites><orcidid>0000-0002-8040-9257 ; 0000-0002-1468-3805 ; 0000-0003-3301-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eshraghi, Javad</creatorcontrib><creatorcontrib>Ardekani, Arezoo M.</creatorcontrib><creatorcontrib>Vlachos, Pavlos P.</creatorcontrib><title>Data assimilation for modeling cavitation bubble dynamics</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The original or modified Rayleigh Plesset equation (RPE) is often used to analyze cavitation bubble dynamics. The prediction accuracy of these equations is governed by the initial values of the physical parameters. However, even for higher fidelity models, deviations from experimental measurements are observed due to the models' underlying assumptions. Here, we present a novel state-observer data assimilation technique designed to fuse time-resolved cavitation bubble diameter measurements with a governing model to yield enhanced spatiotemporal prediction of the cavitation bubble dynamics. This technique places an observer variable in the original or modified RPE and uses a proportional–integral–derivative (PID) control law on the difference between the predicted and measured cavitation bubble diameter. The data-assimilated modeling most accurately estimates the bubble diameter and far-field pressure as the deviation of bubble diameter and far-field pressure predictions from measurements decrease by up to 90% and 60%, respectively. Although the assimilated model is not a substitude for high fidelity models, this technique overcomes the inherent model assumptions, and make the model’s outputs more robust with respect to the physical parameters' initial values. Graphic abstract</description><subject>Accuracy</subject><subject>Cavitation</subject><subject>Data assimilation</subject><subject>Deviation</subject><subject>Diameters</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Proportional integral derivative</subject><subject>Research Article</subject><subject>State observers</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKsG19GqVPq1FN8w4EbXIa8eMvRjTHqE_ntbW3DnquByzy04jF0iXCNAeZMASFYcBHIgLCWfjtgKJQmOiPKYraAUxGVVyFN2ltIOAPMaqhWr7_WoM51S6EKrxzD0WTPErBucb0O_zaz-DOOSm4Mxrc_c1Osu2HTOThrdJn_xe9fs_fHh7e6Zb16fXu5uN9xSXoy8AueMIy1KKb2QJD3avAHw3lgAbTzV1liRF672hEDC14XxugQCR2gsrdnVsruPw8fBp1HthkPs55dK5AgFFLKiuSWWlo1DStE3ah9Dp-OkENS3IrUoUrMi9aNITTNEC5Tmcr_18W_6H-oLW2Rp5g</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Eshraghi, Javad</creator><creator>Ardekani, Arezoo M.</creator><creator>Vlachos, Pavlos P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8040-9257</orcidid><orcidid>https://orcid.org/0000-0002-1468-3805</orcidid><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid></search><sort><creationdate>20210501</creationdate><title>Data assimilation for modeling cavitation bubble dynamics</title><author>Eshraghi, Javad ; Ardekani, Arezoo M. ; Vlachos, Pavlos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Cavitation</topic><topic>Data assimilation</topic><topic>Deviation</topic><topic>Diameters</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Proportional integral derivative</topic><topic>Research Article</topic><topic>State observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eshraghi, Javad</creatorcontrib><creatorcontrib>Ardekani, Arezoo M.</creatorcontrib><creatorcontrib>Vlachos, Pavlos P.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eshraghi, Javad</au><au>Ardekani, Arezoo M.</au><au>Vlachos, Pavlos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data assimilation for modeling cavitation bubble dynamics</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>62</volume><issue>5</issue><artnum>90</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The original or modified Rayleigh Plesset equation (RPE) is often used to analyze cavitation bubble dynamics. The prediction accuracy of these equations is governed by the initial values of the physical parameters. However, even for higher fidelity models, deviations from experimental measurements are observed due to the models' underlying assumptions. Here, we present a novel state-observer data assimilation technique designed to fuse time-resolved cavitation bubble diameter measurements with a governing model to yield enhanced spatiotemporal prediction of the cavitation bubble dynamics. This technique places an observer variable in the original or modified RPE and uses a proportional–integral–derivative (PID) control law on the difference between the predicted and measured cavitation bubble diameter. The data-assimilated modeling most accurately estimates the bubble diameter and far-field pressure as the deviation of bubble diameter and far-field pressure predictions from measurements decrease by up to 90% and 60%, respectively. Although the assimilated model is not a substitude for high fidelity models, this technique overcomes the inherent model assumptions, and make the model’s outputs more robust with respect to the physical parameters' initial values. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-021-03174-y</doi><orcidid>https://orcid.org/0000-0002-8040-9257</orcidid><orcidid>https://orcid.org/0000-0002-1468-3805</orcidid><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2021-05, Vol.62 (5), Article 90
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2510606483
source Springer Link
subjects Accuracy
Cavitation
Data assimilation
Deviation
Diameters
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Heat and Mass Transfer
Mathematical models
Modelling
Parameters
Physical properties
Proportional integral derivative
Research Article
State observers
title Data assimilation for modeling cavitation bubble dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20assimilation%20for%20modeling%20cavitation%20bubble%20dynamics&rft.jtitle=Experiments%20in%20fluids&rft.au=Eshraghi,%20Javad&rft.date=2021-05-01&rft.volume=62&rft.issue=5&rft.artnum=90&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-021-03174-y&rft_dat=%3Cproquest_cross%3E2510606483%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-80ddbd3a2744e2434e1c5f00eebc00abe39cbc256d9e31032e96bea7030d31bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510606483&rft_id=info:pmid/&rfr_iscdi=true