Loading…
Determination of ingredients in packaged pharmaceutical tablets by energy dispersive X‐ray diffraction and maximum likelihood principal component analysis multivariate curve resolution‐alternating least squares with correlation constraint
Energy dispersive X‐ray diffraction (EDXRD) and maximum likelihood principal component analysis multivariate curve resolution‐alternating least squares (MLPCA‐MCR‐ALS) with correlation constraint were used to quantify the composition of packaged pharmaceutical formulations. Recorded EDXRD profiles f...
Saved in:
Published in: | Journal of chemometrics 2021-04, Vol.35 (4), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Energy dispersive X‐ray diffraction (EDXRD) and maximum likelihood principal component analysis multivariate curve resolution‐alternating least squares (MLPCA‐MCR‐ALS) with correlation constraint were used to quantify the composition of packaged pharmaceutical formulations. Recorded EDXRD profiles from unpackaged and packaged samples of ternary mixtures were modelled together in order to recover the concentrations as well as the pure profiles of the constituent compounds. MLPCA was used as a data pretreatment step to MCR‐ALS, accounting for the high noise and nonconstant variance observed in the EDXRD profiles and was shown to improve the resolution accuracy of MCR‐ALS for the data set. Local correlation constraints were applied in the MCR‐ALS procedure in order to model unpackaged and packaged samples simultaneously while accounting for the matrix effect of the packaging materials. The composition of the formulations was estimated with root‐mean‐square error of prediction for each component, including paracetamol, being approximately 2.5 %w/w for unpackaged and packaged samples. Paracetamol concentration was resolved simultaneously for the unpackaged and packaged samples to a greater degree of accuracy than achieved by partial least squares regression (PLSR) when modelling the contexts separately. By modelling the effects of the packaging and incorporating accurate reference information of unpackaged samples into the resolution of packaged samples, the potential of EDXRD and MLPCA‐MCR‐ALS for the identification and quantification of packaged solid‐dosage medicine in nondestructive screening and counterfeit medicine detection has been raised.
Energy dispersive X‐ray diffraction (EDXRD) and maximum likelihood principal component analysis multivariate curve resolution‐alternating least squares (MLPCA‐MCR‐ALS) with correlation constraint were used to quantify the composition of packaged pharmaceutical formulations. A multiset data structure was used to model and resolve concentrations and pure signals of unpackaged and packaged samples simultaneously. MLPCA enabled greater accuracy of resolution. The potential application of EDXRD and MLPCA‐MCR‐ALS in counterfeit medicine screening is demonstrated. |
---|---|
ISSN: | 0886-9383 1099-128X |
DOI: | 10.1002/cem.3329 |