Loading…

Sources of Subseasonal Predictability over CONUS during Boreal Summer

The predictability of the Unified Forecast System (UFS) Coupled Model Prototype 2 developed by the National Centers for Environmental Prediction is assessed for the boreal summer over the continental United States (CONUS). The retrospective forecasts of low-level horizontal wind, precipitation and 2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2021-05, Vol.34 (9), p.3273-3294
Main Authors: Krishnamurthy, V., Meixner, Jessica, Stefanova, Lydia, Wang, Jiande, Worthen, Denise, Moorthi, Shrinivas, Li, Bin, Sluka, Travis, Stan, Cristiana
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-4709d6437aafe40828450c20b1fad9a3489c3831738fa3079e2a7d64156155e93
cites
container_end_page 3294
container_issue 9
container_start_page 3273
container_title Journal of climate
container_volume 34
creator Krishnamurthy, V.
Meixner, Jessica
Stefanova, Lydia
Wang, Jiande
Worthen, Denise
Moorthi, Shrinivas
Li, Bin
Sluka, Travis
Stan, Cristiana
description The predictability of the Unified Forecast System (UFS) Coupled Model Prototype 2 developed by the National Centers for Environmental Prediction is assessed for the boreal summer over the continental United States (CONUS). The retrospective forecasts of low-level horizontal wind, precipitation and 2-m temperature for 2011–17 are examined to determine the predictability at subseasonal time scale. Using a data-adaptive method, the leading modes of variability are obtained and identified to be related to El Niño–Southern Oscillation (ENSO), intraseasonal oscillation (ISO), and warming trend. In a new approach, the sources of enhanced predictability are identified by examining the forecast errors and correlations in the weekly averages of the leading modes of variability. During the boreal summer, the ISO followed by the trend in UFS are found to provide better predictability in weeks 1–4 compared to the ENSO mode and the total anomaly. The western CONUS seems to have better predictability on weekly time scale in all three modes.
doi_str_mv 10.1175/JCLI-D-20-0586.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2511387368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27076794</jstor_id><sourcerecordid>27076794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4709d6437aafe40828450c20b1fad9a3489c3831738fa3079e2a7d64156155e93</originalsourceid><addsrcrecordid>eNo9kN9LwzAUhYMoOKfvvggBnzNvfjXJo3ZTJ8MJdc8ha1Pp2JaZtML-e1smPl0ufN_hcBC6pTChVMmHt3wxJ1PCgIDU2YSeoRGVwycEO0cj0EYQraS8RFcpbQAoywBGaFaELpY-4VDjolsn71LYuy3-iL5qytatm23THnH48RHny_dVgasuNvsv_BSi77mi2-18vEYXtdsmf_N3x2j1PPvMX8li-TLPHxek5Fy2RCgwVSa4cq72AjTTQkLJYE1rVxnHhTYl15wqrmvHQRnPnOoFKjMqpTd8jO5PuYcYvjufWrvp6_d9k2WSUq4Vz3RPwYkqY0gp-toeYrNz8Wgp2GEsO4xlp5aBHcaytFfuTsomtSH-80yBypQR_BcJXWSr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511387368</pqid></control><display><type>article</type><title>Sources of Subseasonal Predictability over CONUS during Boreal Summer</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Krishnamurthy, V. ; Meixner, Jessica ; Stefanova, Lydia ; Wang, Jiande ; Worthen, Denise ; Moorthi, Shrinivas ; Li, Bin ; Sluka, Travis ; Stan, Cristiana</creator><creatorcontrib>Krishnamurthy, V. ; Meixner, Jessica ; Stefanova, Lydia ; Wang, Jiande ; Worthen, Denise ; Moorthi, Shrinivas ; Li, Bin ; Sluka, Travis ; Stan, Cristiana</creatorcontrib><description>The predictability of the Unified Forecast System (UFS) Coupled Model Prototype 2 developed by the National Centers for Environmental Prediction is assessed for the boreal summer over the continental United States (CONUS). The retrospective forecasts of low-level horizontal wind, precipitation and 2-m temperature for 2011–17 are examined to determine the predictability at subseasonal time scale. Using a data-adaptive method, the leading modes of variability are obtained and identified to be related to El Niño–Southern Oscillation (ENSO), intraseasonal oscillation (ISO), and warming trend. In a new approach, the sources of enhanced predictability are identified by examining the forecast errors and correlations in the weekly averages of the leading modes of variability. During the boreal summer, the ISO followed by the trend in UFS are found to provide better predictability in weeks 1–4 compared to the ENSO mode and the total anomaly. The western CONUS seems to have better predictability on weekly time scale in all three modes.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-20-0586.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Climate ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Forecast errors ; Ice ; Identification ; Intraseasonal oscillation ; Modes ; Oceanic analysis ; Precipitation ; Prototypes ; Southern Oscillation ; Summer ; Temperature ; Time ; Time series ; Variability ; Weekly</subject><ispartof>Journal of climate, 2021-05, Vol.34 (9), p.3273-3294</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4709d6437aafe40828450c20b1fad9a3489c3831738fa3079e2a7d64156155e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27076794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27076794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Meixner, Jessica</creatorcontrib><creatorcontrib>Stefanova, Lydia</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Worthen, Denise</creatorcontrib><creatorcontrib>Moorthi, Shrinivas</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sluka, Travis</creatorcontrib><creatorcontrib>Stan, Cristiana</creatorcontrib><title>Sources of Subseasonal Predictability over CONUS during Boreal Summer</title><title>Journal of climate</title><description>The predictability of the Unified Forecast System (UFS) Coupled Model Prototype 2 developed by the National Centers for Environmental Prediction is assessed for the boreal summer over the continental United States (CONUS). The retrospective forecasts of low-level horizontal wind, precipitation and 2-m temperature for 2011–17 are examined to determine the predictability at subseasonal time scale. Using a data-adaptive method, the leading modes of variability are obtained and identified to be related to El Niño–Southern Oscillation (ENSO), intraseasonal oscillation (ISO), and warming trend. In a new approach, the sources of enhanced predictability are identified by examining the forecast errors and correlations in the weekly averages of the leading modes of variability. During the boreal summer, the ISO followed by the trend in UFS are found to provide better predictability in weeks 1–4 compared to the ENSO mode and the total anomaly. The western CONUS seems to have better predictability on weekly time scale in all three modes.</description><subject>Climate</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Forecast errors</subject><subject>Ice</subject><subject>Identification</subject><subject>Intraseasonal oscillation</subject><subject>Modes</subject><subject>Oceanic analysis</subject><subject>Precipitation</subject><subject>Prototypes</subject><subject>Southern Oscillation</subject><subject>Summer</subject><subject>Temperature</subject><subject>Time</subject><subject>Time series</subject><subject>Variability</subject><subject>Weekly</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAUhYMoOKfvvggBnzNvfjXJo3ZTJ8MJdc8ha1Pp2JaZtML-e1smPl0ufN_hcBC6pTChVMmHt3wxJ1PCgIDU2YSeoRGVwycEO0cj0EYQraS8RFcpbQAoywBGaFaELpY-4VDjolsn71LYuy3-iL5qytatm23THnH48RHny_dVgasuNvsv_BSi77mi2-18vEYXtdsmf_N3x2j1PPvMX8li-TLPHxek5Fy2RCgwVSa4cq72AjTTQkLJYE1rVxnHhTYl15wqrmvHQRnPnOoFKjMqpTd8jO5PuYcYvjufWrvp6_d9k2WSUq4Vz3RPwYkqY0gp-toeYrNz8Wgp2GEsO4xlp5aBHcaytFfuTsomtSH-80yBypQR_BcJXWSr</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Krishnamurthy, V.</creator><creator>Meixner, Jessica</creator><creator>Stefanova, Lydia</creator><creator>Wang, Jiande</creator><creator>Worthen, Denise</creator><creator>Moorthi, Shrinivas</creator><creator>Li, Bin</creator><creator>Sluka, Travis</creator><creator>Stan, Cristiana</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210501</creationdate><title>Sources of Subseasonal Predictability over CONUS during Boreal Summer</title><author>Krishnamurthy, V. ; Meixner, Jessica ; Stefanova, Lydia ; Wang, Jiande ; Worthen, Denise ; Moorthi, Shrinivas ; Li, Bin ; Sluka, Travis ; Stan, Cristiana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4709d6437aafe40828450c20b1fad9a3489c3831738fa3079e2a7d64156155e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Climate</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Forecast errors</topic><topic>Ice</topic><topic>Identification</topic><topic>Intraseasonal oscillation</topic><topic>Modes</topic><topic>Oceanic analysis</topic><topic>Precipitation</topic><topic>Prototypes</topic><topic>Southern Oscillation</topic><topic>Summer</topic><topic>Temperature</topic><topic>Time</topic><topic>Time series</topic><topic>Variability</topic><topic>Weekly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Meixner, Jessica</creatorcontrib><creatorcontrib>Stefanova, Lydia</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Worthen, Denise</creatorcontrib><creatorcontrib>Moorthi, Shrinivas</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sluka, Travis</creatorcontrib><creatorcontrib>Stan, Cristiana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Homework Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, V.</au><au>Meixner, Jessica</au><au>Stefanova, Lydia</au><au>Wang, Jiande</au><au>Worthen, Denise</au><au>Moorthi, Shrinivas</au><au>Li, Bin</au><au>Sluka, Travis</au><au>Stan, Cristiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources of Subseasonal Predictability over CONUS during Boreal Summer</atitle><jtitle>Journal of climate</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>34</volume><issue>9</issue><spage>3273</spage><epage>3294</epage><pages>3273-3294</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The predictability of the Unified Forecast System (UFS) Coupled Model Prototype 2 developed by the National Centers for Environmental Prediction is assessed for the boreal summer over the continental United States (CONUS). The retrospective forecasts of low-level horizontal wind, precipitation and 2-m temperature for 2011–17 are examined to determine the predictability at subseasonal time scale. Using a data-adaptive method, the leading modes of variability are obtained and identified to be related to El Niño–Southern Oscillation (ENSO), intraseasonal oscillation (ISO), and warming trend. In a new approach, the sources of enhanced predictability are identified by examining the forecast errors and correlations in the weekly averages of the leading modes of variability. During the boreal summer, the ISO followed by the trend in UFS are found to provide better predictability in weeks 1–4 compared to the ENSO mode and the total anomaly. The western CONUS seems to have better predictability on weekly time scale in all three modes.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-20-0586.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2021-05, Vol.34 (9), p.3273-3294
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2511387368
source JSTOR Archival Journals and Primary Sources Collection
subjects Climate
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Forecast errors
Ice
Identification
Intraseasonal oscillation
Modes
Oceanic analysis
Precipitation
Prototypes
Southern Oscillation
Summer
Temperature
Time
Time series
Variability
Weekly
title Sources of Subseasonal Predictability over CONUS during Boreal Summer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20of%20Subseasonal%20Predictability%20over%20CONUS%20during%20Boreal%20Summer&rft.jtitle=Journal%20of%20climate&rft.au=Krishnamurthy,%20V.&rft.date=2021-05-01&rft.volume=34&rft.issue=9&rft.spage=3273&rft.epage=3294&rft.pages=3273-3294&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-20-0586.1&rft_dat=%3Cjstor_proqu%3E27076794%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-4709d6437aafe40828450c20b1fad9a3489c3831738fa3079e2a7d64156155e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511387368&rft_id=info:pmid/&rft_jstor_id=27076794&rfr_iscdi=true