Loading…

High frequency trading and stock index returns: A nonlinear dynamic analysis

•We study the impact of High Frequency Trading (HFT) on the probabilistic properties of the stock returns across five major stock market indexes.•Our results document a decline in Multiscale Entropy (MSE) during the post-HFT periods, suggesting that the presence of HFT makes the index returns more p...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2021-06, Vol.97, p.105710, Article 105710
Main Authors: Cecen, Aydin A., Jain, Pawan, Xiao, Linlan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3
cites cdi_FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3
container_end_page
container_issue
container_start_page 105710
container_title Communications in nonlinear science & numerical simulation
container_volume 97
creator Cecen, Aydin A.
Jain, Pawan
Xiao, Linlan
description •We study the impact of High Frequency Trading (HFT) on the probabilistic properties of the stock returns across five major stock market indexes.•Our results document a decline in Multiscale Entropy (MSE) during the post-HFT periods, suggesting that the presence of HFT makes the index returns more predictable.•We also find that the Markov property does not hold before and after the introduction of HFT in different markets.•We improve on the confidence intervals of Multiscale Entropy (MSE) estimates using a circular bootstrap method.•Collectively, our results demonstrate a decline in market efficiency due to the introduction of HFT/algorithmic trading. This study seeks to understand whether and to what extent High Frequency Trading (HFT) affects the probabilistic properties of the stock returns in five markets. More specifically, it focuses on the impact of HFT/Machine trading on five major stock indices, DAX, Nikkei 225, S&P 500, Russell 2000, and TOPIX. The empirical analysis demonstrates that while the introduction of machine trading and/or HFT appears to make the return series more “predictable” by reducing their Multiscale Entropy, it does not affect the Markov property, which, not surprisingly, does not hold for the entire return series under study.
doi_str_mv 10.1016/j.cnsns.2021.105710
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511918198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421000216</els_id><sourcerecordid>2511918198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1gsMaf47CSOkRiqCihSJBaYLcd2ikPrFDtF5N_jEmamO53eu3v3IXQNZAEEyttuoX30cUEJhTQpOJATNIOKVxmnPD9NPSE8KzjJz9FFjB1JLlHkM1Sv3eYdt8F-HqzXIx6CMs5vsPIGx6HXH9h5Y79xsMMh-HiHl9j3fuu8VQGb0aud00mstmN08RKdtWob7dVfnaO3x4fX1TqrX56eV8s604zBkBmiGsFUqauGg2IiN0LTxhKiTd7wRlOhWKFUw0CXQhBKQfPGcCuKkpHStmyObqa9-9Cn3HGQXZ_SpZOSFgACKhBVUrFJpUMfY7Ct3Ae3U2GUQOQRm-zkLzZ5xCYnbMl1P7lseuDL2SCjdgmNNS5YPUjTu3_9P8Uqd0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511918198</pqid></control><display><type>article</type><title>High frequency trading and stock index returns: A nonlinear dynamic analysis</title><source>Elsevier</source><creator>Cecen, Aydin A. ; Jain, Pawan ; Xiao, Linlan</creator><creatorcontrib>Cecen, Aydin A. ; Jain, Pawan ; Xiao, Linlan</creatorcontrib><description>•We study the impact of High Frequency Trading (HFT) on the probabilistic properties of the stock returns across five major stock market indexes.•Our results document a decline in Multiscale Entropy (MSE) during the post-HFT periods, suggesting that the presence of HFT makes the index returns more predictable.•We also find that the Markov property does not hold before and after the introduction of HFT in different markets.•We improve on the confidence intervals of Multiscale Entropy (MSE) estimates using a circular bootstrap method.•Collectively, our results demonstrate a decline in market efficiency due to the introduction of HFT/algorithmic trading. This study seeks to understand whether and to what extent High Frequency Trading (HFT) affects the probabilistic properties of the stock returns in five markets. More specifically, it focuses on the impact of HFT/Machine trading on five major stock indices, DAX, Nikkei 225, S&amp;P 500, Russell 2000, and TOPIX. The empirical analysis demonstrates that while the introduction of machine trading and/or HFT appears to make the return series more “predictable” by reducing their Multiscale Entropy, it does not affect the Markov property, which, not surprisingly, does not hold for the entire return series under study.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.105710</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Empirical analysis ; Entropy ; Heavy-tails ; High frequencies ; High frequency trading ; Markov analysis ; Markov property ; Multi scale entropy ; Nonlinear dynamics ; Probability ; Securities trading ; Stock prices</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-06, Vol.97, p.105710, Article 105710</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3</citedby><cites>FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cecen, Aydin A.</creatorcontrib><creatorcontrib>Jain, Pawan</creatorcontrib><creatorcontrib>Xiao, Linlan</creatorcontrib><title>High frequency trading and stock index returns: A nonlinear dynamic analysis</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•We study the impact of High Frequency Trading (HFT) on the probabilistic properties of the stock returns across five major stock market indexes.•Our results document a decline in Multiscale Entropy (MSE) during the post-HFT periods, suggesting that the presence of HFT makes the index returns more predictable.•We also find that the Markov property does not hold before and after the introduction of HFT in different markets.•We improve on the confidence intervals of Multiscale Entropy (MSE) estimates using a circular bootstrap method.•Collectively, our results demonstrate a decline in market efficiency due to the introduction of HFT/algorithmic trading. This study seeks to understand whether and to what extent High Frequency Trading (HFT) affects the probabilistic properties of the stock returns in five markets. More specifically, it focuses on the impact of HFT/Machine trading on five major stock indices, DAX, Nikkei 225, S&amp;P 500, Russell 2000, and TOPIX. The empirical analysis demonstrates that while the introduction of machine trading and/or HFT appears to make the return series more “predictable” by reducing their Multiscale Entropy, it does not affect the Markov property, which, not surprisingly, does not hold for the entire return series under study.</description><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Heavy-tails</subject><subject>High frequencies</subject><subject>High frequency trading</subject><subject>Markov analysis</subject><subject>Markov property</subject><subject>Multi scale entropy</subject><subject>Nonlinear dynamics</subject><subject>Probability</subject><subject>Securities trading</subject><subject>Stock prices</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1gsMaf47CSOkRiqCihSJBaYLcd2ikPrFDtF5N_jEmamO53eu3v3IXQNZAEEyttuoX30cUEJhTQpOJATNIOKVxmnPD9NPSE8KzjJz9FFjB1JLlHkM1Sv3eYdt8F-HqzXIx6CMs5vsPIGx6HXH9h5Y79xsMMh-HiHl9j3fuu8VQGb0aud00mstmN08RKdtWob7dVfnaO3x4fX1TqrX56eV8s604zBkBmiGsFUqauGg2IiN0LTxhKiTd7wRlOhWKFUw0CXQhBKQfPGcCuKkpHStmyObqa9-9Cn3HGQXZ_SpZOSFgACKhBVUrFJpUMfY7Ct3Ae3U2GUQOQRm-zkLzZ5xCYnbMl1P7lseuDL2SCjdgmNNS5YPUjTu3_9P8Uqd0M</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Cecen, Aydin A.</creator><creator>Jain, Pawan</creator><creator>Xiao, Linlan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202106</creationdate><title>High frequency trading and stock index returns: A nonlinear dynamic analysis</title><author>Cecen, Aydin A. ; Jain, Pawan ; Xiao, Linlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Heavy-tails</topic><topic>High frequencies</topic><topic>High frequency trading</topic><topic>Markov analysis</topic><topic>Markov property</topic><topic>Multi scale entropy</topic><topic>Nonlinear dynamics</topic><topic>Probability</topic><topic>Securities trading</topic><topic>Stock prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cecen, Aydin A.</creatorcontrib><creatorcontrib>Jain, Pawan</creatorcontrib><creatorcontrib>Xiao, Linlan</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cecen, Aydin A.</au><au>Jain, Pawan</au><au>Xiao, Linlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High frequency trading and stock index returns: A nonlinear dynamic analysis</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-06</date><risdate>2021</risdate><volume>97</volume><spage>105710</spage><pages>105710-</pages><artnum>105710</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•We study the impact of High Frequency Trading (HFT) on the probabilistic properties of the stock returns across five major stock market indexes.•Our results document a decline in Multiscale Entropy (MSE) during the post-HFT periods, suggesting that the presence of HFT makes the index returns more predictable.•We also find that the Markov property does not hold before and after the introduction of HFT in different markets.•We improve on the confidence intervals of Multiscale Entropy (MSE) estimates using a circular bootstrap method.•Collectively, our results demonstrate a decline in market efficiency due to the introduction of HFT/algorithmic trading. This study seeks to understand whether and to what extent High Frequency Trading (HFT) affects the probabilistic properties of the stock returns in five markets. More specifically, it focuses on the impact of HFT/Machine trading on five major stock indices, DAX, Nikkei 225, S&amp;P 500, Russell 2000, and TOPIX. The empirical analysis demonstrates that while the introduction of machine trading and/or HFT appears to make the return series more “predictable” by reducing their Multiscale Entropy, it does not affect the Markov property, which, not surprisingly, does not hold for the entire return series under study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.105710</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-06, Vol.97, p.105710, Article 105710
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2511918198
source Elsevier
subjects Empirical analysis
Entropy
Heavy-tails
High frequencies
High frequency trading
Markov analysis
Markov property
Multi scale entropy
Nonlinear dynamics
Probability
Securities trading
Stock prices
title High frequency trading and stock index returns: A nonlinear dynamic analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20frequency%20trading%20and%20stock%20index%20returns:%20A%20nonlinear%20dynamic%20analysis&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Cecen,%20Aydin%20A.&rft.date=2021-06&rft.volume=97&rft.spage=105710&rft.pages=105710-&rft.artnum=105710&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.105710&rft_dat=%3Cproquest_cross%3E2511918198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-d0ab93a6c8b71a394d9c2be00cd4b7bc29a35aab31c6990221c7bd7e956306ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511918198&rft_id=info:pmid/&rfr_iscdi=true