Loading…

Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities

The aim of the present work was to synthesize carrageenan coated silver nanoparticles (CA–AgNPs) using carrageenan as reducing and stabilizing agent. For this purpose, 10 mL of 0.35% (w/v) carrageenan solution was mixed with 10 mL AgNO 3 solution at different concentrations (1, 5 and 10 mM), and the...

Full description

Saved in:
Bibliographic Details
Published in:Research on chemical intermediates 2021-05, Vol.47 (5), p.1843-1864
Main Authors: Gün Gök, Zehra, Karayel, Mine, Yiğitoğlu, Mustafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the present work was to synthesize carrageenan coated silver nanoparticles (CA–AgNPs) using carrageenan as reducing and stabilizing agent. For this purpose, 10 mL of 0.35% (w/v) carrageenan solution was mixed with 10 mL AgNO 3 solution at different concentrations (1, 5 and 10 mM), and the resulting mixture was stirred at 100 °C at high speed for 2 h. The formation of CA–AgNPs was proven with the surface plasmon peaks observed at approximately 420 nm. The sizes and zeta potentials of CA–AgNPs were determined by Zeta-Sizer. Negative zeta potentials of CA–AgNPs indicated that the obtained AgNPs were stable. With scanning electron microscope (SEM) and transmission electron microscope analysis, it was seen that CA–AgNPs have spherical structure. According to the energy dispersion spectrometer analysis based on SEM images, it was observed that the samples were elementally composed of carbon, oxygen, sulfur, potassium and silver. The chemical structures of CA–AgNPs were determined by Fourier transform infrared spectroscopy, and it was proved that the carbonyl and OH groups of carrageenan were involved in formation and stabilizing of AgNPs, respectively. According to thermal gravimetric analysis, it has been observed that CA–AgNPs were thermally more stable than pure carrageenan. Antibacterial activity of CA–AgNPs against gram-positive and gram-negative bacteria was investigated with agar well diffusion and liquid test. It has been observed that CA–AgNPs synthesized with 1 mM AgNO 3 did not have an antibacterial activity on Escherichia coli and Staphylococcus aureus. Inhibition zones of varying diameters were observed in the 5 mM and 10 mM S-AgNPs groups. The synthesized CA–AgNPs (5 and 10 mM) have the capacity to be used in wound dressing materials or topical agents applied to burns and wounds due to their antibacterial effects and stability.
ISSN:0922-6168
1568-5675
DOI:10.1007/s11164-021-04399-6