Loading…

A study on group lasso for grouped variable selection in regression model

Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produc...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2021-03, Vol.1115 (1), p.12089
Main Authors: Sunandi, E, Notodoputro, K A, Sartono, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643
cites cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643
container_end_page
container_issue 1
container_start_page 12089
container_title IOP conference series. Materials Science and Engineering
container_volume 1115
creator Sunandi, E
Notodoputro, K A
Sartono, B
description Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.
doi_str_mv 10.1088/1757-899X/1115/1/012089
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511971125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511971125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnab6iga9caydZjGUIfgUA3LXQnZHscHBzLlexC_r42LlnNHO5lBg4hj8CegWmdgspVoo35TgEgTyFlwJk2V2R1Sa4vu4ZbchfjkTGpsoytyG5D4zBWZ-o7egh-7GnrYvS09mFhrOivC40rWqQRWyyHZqo2HQ14CBjjTCdfYXtPbmrXRnz4n2vy9fryuX1P9h9vu-1mn5RcKJOYQmguURbIpRJSSJ0xLrgznKlSogDMC5Y5pVSdy0o6AZVxqEtmMJs4E2vytNztg_8ZMQ726MfQTS8tzwGMAuD51FJLqww-xoC17UNzcuFsgdnZm52N2NmOnb1ZsIs38QeSA1_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511971125</pqid></control><display><type>article</type><title>A study on group lasso for grouped variable selection in regression model</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Sunandi, E ; Notodoputro, K A ; Sartono, B</creator><creatorcontrib>Sunandi, E ; Notodoputro, K A ; Sartono, B</creatorcontrib><description>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1115/1/012089</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Parameter estimation ; Regression models ; Simulation</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1115 (1), p.12089</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</citedby><cites>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2511971125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Sunandi, E</creatorcontrib><creatorcontrib>Notodoputro, K A</creatorcontrib><creatorcontrib>Sartono, B</creatorcontrib><title>A study on group lasso for grouped variable selection in regression model</title><title>IOP conference series. Materials Science and Engineering</title><description>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</description><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Simulation</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kMtqwzAQRUVpoWnab6iga9caydZjGUIfgUA3LXQnZHscHBzLlexC_r42LlnNHO5lBg4hj8CegWmdgspVoo35TgEgTyFlwJk2V2R1Sa4vu4ZbchfjkTGpsoytyG5D4zBWZ-o7egh-7GnrYvS09mFhrOivC40rWqQRWyyHZqo2HQ14CBjjTCdfYXtPbmrXRnz4n2vy9fryuX1P9h9vu-1mn5RcKJOYQmguURbIpRJSSJ0xLrgznKlSogDMC5Y5pVSdy0o6AZVxqEtmMJs4E2vytNztg_8ZMQ726MfQTS8tzwGMAuD51FJLqww-xoC17UNzcuFsgdnZm52N2NmOnb1ZsIs38QeSA1_T</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sunandi, E</creator><creator>Notodoputro, K A</creator><creator>Sartono, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>A study on group lasso for grouped variable selection in regression model</title><author>Sunandi, E ; Notodoputro, K A ; Sartono, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunandi, E</creatorcontrib><creatorcontrib>Notodoputro, K A</creatorcontrib><creatorcontrib>Sartono, B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunandi, E</au><au>Notodoputro, K A</au><au>Sartono, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on group lasso for grouped variable selection in regression model</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1115</volume><issue>1</issue><spage>12089</spage><pages>12089-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1115/1/012089</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2021-03, Vol.1115 (1), p.12089
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2511971125
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Parameter estimation
Regression models
Simulation
title A study on group lasso for grouped variable selection in regression model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20group%20lasso%20for%20grouped%20variable%20selection%20in%20regression%20model&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Sunandi,%20E&rft.date=2021-03-01&rft.volume=1115&rft.issue=1&rft.spage=12089&rft.pages=12089-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1115/1/012089&rft_dat=%3Cproquest_cross%3E2511971125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511971125&rft_id=info:pmid/&rfr_iscdi=true