Loading…
A study on group lasso for grouped variable selection in regression model
Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produc...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2021-03, Vol.1115 (1), p.12089 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643 |
---|---|
cites | cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643 |
container_end_page | |
container_issue | 1 |
container_start_page | 12089 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 1115 |
creator | Sunandi, E Notodoputro, K A Sartono, B |
description | Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%. |
doi_str_mv | 10.1088/1757-899X/1115/1/012089 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2511971125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511971125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnab6iga9caydZjGUIfgUA3LXQnZHscHBzLlexC_r42LlnNHO5lBg4hj8CegWmdgspVoo35TgEgTyFlwJk2V2R1Sa4vu4ZbchfjkTGpsoytyG5D4zBWZ-o7egh-7GnrYvS09mFhrOivC40rWqQRWyyHZqo2HQ14CBjjTCdfYXtPbmrXRnz4n2vy9fryuX1P9h9vu-1mn5RcKJOYQmguURbIpRJSSJ0xLrgznKlSogDMC5Y5pVSdy0o6AZVxqEtmMJs4E2vytNztg_8ZMQ726MfQTS8tzwGMAuD51FJLqww-xoC17UNzcuFsgdnZm52N2NmOnb1ZsIs38QeSA1_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511971125</pqid></control><display><type>article</type><title>A study on group lasso for grouped variable selection in regression model</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Sunandi, E ; Notodoputro, K A ; Sartono, B</creator><creatorcontrib>Sunandi, E ; Notodoputro, K A ; Sartono, B</creatorcontrib><description>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1115/1/012089</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Parameter estimation ; Regression models ; Simulation</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1115 (1), p.12089</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</citedby><cites>FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2511971125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Sunandi, E</creatorcontrib><creatorcontrib>Notodoputro, K A</creatorcontrib><creatorcontrib>Sartono, B</creatorcontrib><title>A study on group lasso for grouped variable selection in regression model</title><title>IOP conference series. Materials Science and Engineering</title><description>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</description><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Simulation</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kMtqwzAQRUVpoWnab6iga9caydZjGUIfgUA3LXQnZHscHBzLlexC_r42LlnNHO5lBg4hj8CegWmdgspVoo35TgEgTyFlwJk2V2R1Sa4vu4ZbchfjkTGpsoytyG5D4zBWZ-o7egh-7GnrYvS09mFhrOivC40rWqQRWyyHZqo2HQ14CBjjTCdfYXtPbmrXRnz4n2vy9fryuX1P9h9vu-1mn5RcKJOYQmguURbIpRJSSJ0xLrgznKlSogDMC5Y5pVSdy0o6AZVxqEtmMJs4E2vytNztg_8ZMQ726MfQTS8tzwGMAuD51FJLqww-xoC17UNzcuFsgdnZm52N2NmOnb1ZsIs38QeSA1_T</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sunandi, E</creator><creator>Notodoputro, K A</creator><creator>Sartono, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>A study on group lasso for grouped variable selection in regression model</title><author>Sunandi, E ; Notodoputro, K A ; Sartono, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunandi, E</creatorcontrib><creatorcontrib>Notodoputro, K A</creatorcontrib><creatorcontrib>Sartono, B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunandi, E</au><au>Notodoputro, K A</au><au>Sartono, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on group lasso for grouped variable selection in regression model</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1115</volume><issue>1</issue><spage>12089</spage><pages>12089-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Estimation of regression parameters using the Least Squares (LS) method could not be performed when the number of explanatory variables exceeds the number of observations. An approach that can solve the problem is the LASSO (Least Absolute Shrinkage and Selection Operator) method. This method produces a stable model but with slight bias as the trade-off. Yuan and Lin [6] introduced the Group LASSO method which can be used when there are grouped structure in the variables. This current paper provided a study of the performance of the Group LASSO method through a simulation with several different scenarios. Furthermore, the Group LASSO method was applied to the Human Development Index (HDI) data of Bengkulu Province in 2019. The simulation yieled that the Group LASSO analysis was better than LASSO in term of its Mean Squared Error of Prediction (MSEP), False Negative Rate (FNR) and R-Squared. In the application of the approach to the HDI data, our result was in line with the simulation results that the analysis of Group LASSO was better than LASSO with MSEP Group LASSO of 0.25 and R-Squared of 98%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1115/1/012089</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2021-03, Vol.1115 (1), p.12089 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2511971125 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Parameter estimation Regression models Simulation |
title | A study on group lasso for grouped variable selection in regression model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20group%20lasso%20for%20grouped%20variable%20selection%20in%20regression%20model&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Sunandi,%20E&rft.date=2021-03-01&rft.volume=1115&rft.issue=1&rft.spage=12089&rft.pages=12089-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1115/1/012089&rft_dat=%3Cproquest_cross%3E2511971125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2379-9b3826e6be2673636840232a9207c6e31e5b04a777f56d6a31d9ae8c09e46d643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511971125&rft_id=info:pmid/&rfr_iscdi=true |